|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.20.21.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Beta[Subscript[z, 1], Subscript[z, 2], a, b], b] ==
Sum[(((-1)^k k! b^(k + 1))/((a + j) (k + 1)! j!)) StirlingS1[j, k]
(Subscript[z, 2]^(j + a) HypergeometricPFQ[{1 + j, a + j}, {1 + a + j},
Subscript[z, 2]] - Subscript[z, 1]^(j + a) HypergeometricPFQ[
{1 + j, a + j}, {1 + a + j}, Subscript[z, 1]]), {j, 0, Infinity},
{k, 0, j}] /; Abs[Subscript[z, 1]] < 1 && Abs[Subscript[z, 2]] < 1 &&
!(Element[-a, Integers] && -a >= 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"], ",", "a", ",", "b"]], "]"]], RowBox[List["\[DifferentialD]", "b"]]]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], SuperscriptBox["b", RowBox[List["k", "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "j"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], RowBox[List["j", "!"]]]]], " ", RowBox[List["StirlingS1", "[", RowBox[List["j", ",", "k"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["z", "2", RowBox[List["j", "+", "a"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "j"]], ",", RowBox[List["a", "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", "a", "+", "j"]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["z", "1", RowBox[List["j", "+", "a"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "j"]], ",", RowBox[List["a", "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", "a", "+", "j"]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", SubscriptBox["z", "1"], "]"]], "<", "1"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["z", "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msub> <semantics> <mi> Β </mi> <annotation encoding='Mathematica'> TagBox["\[CapitalBeta]", BetaRegularized] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> b </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> j </mi> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "j"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["a", "+", "j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "2"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "j"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["a", "+", "j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "1"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ∉ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msub> <semantics> <mi> Β </mi> <annotation encoding='Mathematica'> TagBox["\[CapitalBeta]", BetaRegularized] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> b </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> j </mi> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "j"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["a", "+", "j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "2"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "j"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["a", "+", "j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "1"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ∉ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"], ",", "a_", ",", "b_"]], "]"]], RowBox[List["\[DifferentialD]", "b_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], " ", SuperscriptBox["b", RowBox[List["k", "+", "1"]]]]], ")"]], " ", RowBox[List["StirlingS1", "[", RowBox[List["j", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "2", RowBox[List["j", "+", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "j"]], ",", RowBox[List["a", "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", "a", "+", "j"]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["zz", "1", RowBox[List["j", "+", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "j"]], ",", RowBox[List["a", "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", "a", "+", "j"]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "j"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], " ", RowBox[List["j", "!"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", SubscriptBox["zz", "1"], "]"]], "<", "1"]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["zz", "2"], "]"]], "<", "1"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|