Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > BetaRegularized[z,a,b] > Series representations > Generalized power series > Expansions at z==infinity





http://functions.wolfram.com/06.21.06.0056.01









  


  










Input Form





BetaRegularized[z, a, b] \[Proportional] Piecewise[{{((E^(I (a + b) Pi) z^(-1 + a + b))/((1 - a - b) Beta[a, b]) - (Sin[a Pi] (I Pi + Log[z] - PolyGamma[a] + PolyGamma[a + b]))/Pi)/ E^(I a Pi), Arg[z] <= 0 && Element[-1 + a + b, Integers] && -1 + a + b > 0}, {-((1/(Pi z)) ((Sin[a Pi] (a - I Pi z + z (EulerGamma - Log[z] + PolyGamma[a])))/E^(I a Pi))), Arg[z] <= 0 && a + b == 1}, {((E^(I (a + b) Pi) z^(-1 + a + b))/((1 - a - b) Beta[a, b]) + Csc[(a + b) Pi] Sin[b Pi])/E^(I a Pi), Arg[z] <= 0}, {z^(-1 + a + b)/(E^(I b Pi) ((1 - a - b) Beta[a, b])) + ((Sin[a Pi] E^(I a Pi))/Pi) (Pi I - Log[z] + PolyGamma[a] - PolyGamma[a + b]), Arg[z] > 0 && Element[-1 + a + b, Integers] && -1 + a + b > 0}, {-((1/(Pi z)) (E^(I a Pi) Sin[a Pi] (a + I Pi z + z (EulerGamma - Log[z] + PolyGamma[a])))), Arg[z] > 0 && a + b == 1}}, z^(-1 + a + b)/(E^(I b Pi) ((1 - a - b) Beta[a, b])) + E^(I a Pi) Sin[b Pi] Csc[(a + b) Pi]] /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " "]], "\[Pi]"]]], ")"]]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], ">", "0"]]]]]], "}"]], ",", "\[IndentingNewLine]", RowBox[List["{", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["\[Pi]", " ", "z"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "z"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]]], "}"]], ",", "\[IndentingNewLine]", RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]]]]]], ")"]]]], ",", RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]]]], "\[Pi]"], RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "a", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], ">", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["\[Pi]", " ", "z"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "z"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "\[Pi]"]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]], RowBox[List["Csc", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]], "]"]]]]]]]], "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mo> &#62305; </mo> <mtable> <mtr> <mtd> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> &#960; </mi> </mfrac> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox[&quot;True&quot;, &quot;PiecewiseDefault&quot;, Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BetaRegularized </ci> <ci> z </ci> <ci> a </ci> <ci> b </ci> </apply> <piecewise> <piece> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <pi /> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <ln /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <pi /> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <eulergamma /> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <pi /> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <csc /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <pi /> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </piece> <piece> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> <pi /> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <imaginaryi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <pi /> <ci> z </ci> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <eulergamma /> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </piece> <otherwise> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> <pi /> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <apply> <csc /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <pi /> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <pi /> </apply> </apply> </apply> </apply> </otherwise> </piecewise> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BetaRegularized", "[", RowBox[List["z_", ",", "a_", ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]]]], "\[Pi]"]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], ">", "0"]]]]], List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "z"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["\[Pi]", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]], List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]]], List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "a", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]]]], "\[Pi]"]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]], ">", "0"]]]]], List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "z"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["\[Pi]", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]], List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "\[Pi]"]], "]"]]]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02