Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > BetaRegularized[z,a,b] > Series representations > Residue representations





http://functions.wolfram.com/06.21.06.0065.01









  


  










Input Form





BetaRegularized[z, a, 1 - a + n] == (((-1)^(n - 1) n! Sin[a Pi])/(Pi Gamma[a])) z^a (Sum[Residue[(Gamma[s]/((-z)^s (a - s))) Gamma[a - n - s], {s, a - n + j}], {j, 0, n - 1}] + Sum[Residue[(Gamma[s]/((-z)^s (a - s))) Gamma[a - n - s], {s, a - n + j}], {j, n + 1, Infinity}] + Residue[(Gamma[s] (Gamma[a - n - s]/(a - s)))/(-z)^s, {s, a}]) /; Abs[z] > 1 && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List["z", ",", "a", ",", RowBox[List["1", "-", "a", "+", "n"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], RowBox[List["n", "!"]], RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "a", "]"]]]]], SuperscriptBox["z", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]]]], RowBox[List["a", "-", "s"]]], RowBox[List["Gamma", "[", RowBox[List["a", "-", "n", "-", "s"]], "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["a", "-", "n", "+", "j"]]]], "}"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]]]], RowBox[List["a", "-", "s"]]], RowBox[List["Gamma", "[", RowBox[List["a", "-", "n", "-", "s"]], "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["a", "-", "n", "+", "j"]]]], "}"]]]], "]"]]]], "+", RowBox[List["Residue", "[", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]], FractionBox[RowBox[List["Gamma", "[", RowBox[List["a", "-", "n", "-", "s"]], "]"]], RowBox[List["a", "-", "s"]]]]], ",", RowBox[List["{", RowBox[List["s", ",", "a"]], "}"]]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> a </mi> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> s </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> s </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> s </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8713; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> BetaRegularized </ci> <ci> z </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> n </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> a </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BetaRegularized", "[", RowBox[List["z_", ",", "a_", ",", RowBox[List["1", "-", "a_", "+", "n_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "-", "n", "-", "s"]], "]"]]]], RowBox[List["a", "-", "s"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["a", "-", "n", "+", "j"]]]], "}"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "-", "n", "-", "s"]], "]"]]]], RowBox[List["a", "-", "s"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["a", "-", "n", "+", "j"]]]], "}"]]]], "]"]]]], "+", RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "-", "n", "-", "s"]], "]"]]]], RowBox[List["a", "-", "s"]]], ",", RowBox[List["{", RowBox[List["s", ",", "a"]], "}"]]]], "]"]]]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "a", "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02