Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > BetaRegularized[z,a,b] > Integral transforms > Mellin transforms





http://functions.wolfram.com/06.21.22.0004.01









  


  










Input Form





MellinTransform[BetaRegularized[t, a, b], t, z] == -(((I + Cot[Pi (a + z)]) Sin[Pi b] Gamma[1 - a - b - z] Gamma[a + b])/ (z Gamma[1 - a - z] Gamma[a])) /; Re[a + z] > 0 && Re[z] < 0 && Re[a + b + z] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List["t", ",", "a", ",", "b"]], "]"]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["a", "+", "z"]], ")"]]]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b", "-", "z"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], RowBox[List["z", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "z"]], "]"]], RowBox[List["Gamma", "[", "a", "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "z"]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "<", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b", "+", "z"]], "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <mi> &#8499; </mi> <mi> t </mi> </msub> <mo> [ </mo> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> t </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ] </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> &#8499; </ci> <ci> t </ci> </apply> <apply> <ci> BetaRegularized </ci> <ci> t </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <apply> <plus /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> b </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <real /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List["t_", ",", "a_", ",", "b_"]], "]"]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["a", "+", "z"]], ")"]]]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b", "-", "z"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], RowBox[List["z", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "z"]], "]"]], " ", RowBox[List["Gamma", "[", "a", "]"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "z"]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "<", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b", "+", "z"]], "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29