Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > BetaRegularized[z1,z2,a,b] > Differentiation > Low-order differentiation > With respect to a





http://functions.wolfram.com/06.22.20.0006.01









  


  










Input Form





D[BetaRegularized[Subscript[z, 1], Subscript[z, 2], a, b], {a, 2}] == ((2 Gamma[a] Gamma[a + b])/Gamma[b]) (Subscript[z, 1]^a (Log[Subscript[z, 1]] - PolyGamma[a] + PolyGamma[a + b]) HypergeometricPFQRegularized[{a, a, 1 - b}, {1 + a, 1 + a}, Subscript[z, 1]] - Subscript[z, 2]^a (Log[Subscript[z, 2]] - PolyGamma[a] + PolyGamma[a + b]) HypergeometricPFQRegularized[{a, a, 1 - b}, {1 + a, 1 + a}, Subscript[z, 2]]) + ((2 Gamma[a]^2 Gamma[a + b])/Gamma[b]) (Subscript[z, 2]^a HypergeometricPFQRegularized[{a, a, a, 1 - b}, {1 + a, 1 + a, 1 + a}, Subscript[z, 2]] - Subscript[z, 1]^a HypergeometricPFQRegularized[{a, a, a, 1 - b}, {1 + a, 1 + a, 1 + a}, Subscript[z, 1]]) + (Log[Subscript[z, 2]]^2 + PolyGamma[a]^2 + 2 Log[Subscript[z, 2]] PolyGamma[a + b] + PolyGamma[a + b]^2 - 2 PolyGamma[a] (Log[Subscript[z, 2]] + PolyGamma[a + b]) - PolyGamma[1, a] + PolyGamma[1, a + b]) BetaRegularized[Subscript[z, 2], a, b] + (-Log[Subscript[z, 1]]^2 + 2 Log[Subscript[z, 1]] PolyGamma[a] - PolyGamma[a]^2 - 2 Log[Subscript[z, 1]] PolyGamma[a + b] + 2 PolyGamma[a] PolyGamma[a + b] - PolyGamma[a + b]^2 + PolyGamma[1, a] - PolyGamma[1, a + b]) BetaRegularized[Subscript[z, 1], a, b]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "2"]], "}"]]], RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"], ",", "a", ",", "b"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]], " "]], RowBox[List["Gamma", "[", "b", "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["z", "1", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["z", "2", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], "+", " ", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], RowBox[List["Gamma", "[", "b", "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["z", "2", "a"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["z", "1", "a"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], "2"], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z", "2"], ",", "a", ",", "b"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "2"]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z", "1"], ",", "a", ",", "b"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[SubscriptBox[&quot;z&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[SubscriptBox[&quot;z&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[SubscriptBox[&quot;z&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[SubscriptBox[&quot;z&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> BetaRegularized </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> BetaRegularized </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> BetaRegularized </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "2"]], "}"]]]]], RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"], ",", "a_", ",", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "1", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["zz", "2", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]]]]]], ")"]]]], RowBox[List["Gamma", "[", "b", "]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "2", "a"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["zz", "1", "a"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]]]]]], ")"]]]], RowBox[List["Gamma", "[", "b", "]"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], "2"], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["zz", "2"], ",", "a", ",", "b"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "2"]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["zz", "1"], ",", "a", ",", "b"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29