|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.22.20.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[BetaRegularized[Subscript[z, 1], Subscript[z, 2], a, b], {a, 2}] ==
((2 Gamma[a] Gamma[a + b])/Gamma[b])
(Subscript[z, 1]^a (Log[Subscript[z, 1]] - PolyGamma[a] +
PolyGamma[a + b]) HypergeometricPFQRegularized[{a, a, 1 - b},
{1 + a, 1 + a}, Subscript[z, 1]] - Subscript[z, 2]^a
(Log[Subscript[z, 2]] - PolyGamma[a] + PolyGamma[a + b])
HypergeometricPFQRegularized[{a, a, 1 - b}, {1 + a, 1 + a},
Subscript[z, 2]]) + ((2 Gamma[a]^2 Gamma[a + b])/Gamma[b])
(Subscript[z, 2]^a HypergeometricPFQRegularized[{a, a, a, 1 - b},
{1 + a, 1 + a, 1 + a}, Subscript[z, 2]] - Subscript[z, 1]^a
HypergeometricPFQRegularized[{a, a, a, 1 - b}, {1 + a, 1 + a, 1 + a},
Subscript[z, 1]]) + (Log[Subscript[z, 2]]^2 + PolyGamma[a]^2 +
2 Log[Subscript[z, 2]] PolyGamma[a + b] + PolyGamma[a + b]^2 -
2 PolyGamma[a] (Log[Subscript[z, 2]] + PolyGamma[a + b]) -
PolyGamma[1, a] + PolyGamma[1, a + b]) BetaRegularized[Subscript[z, 2],
a, b] + (-Log[Subscript[z, 1]]^2 + 2 Log[Subscript[z, 1]] PolyGamma[a] -
PolyGamma[a]^2 - 2 Log[Subscript[z, 1]] PolyGamma[a + b] +
2 PolyGamma[a] PolyGamma[a + b] - PolyGamma[a + b]^2 + PolyGamma[1, a] -
PolyGamma[1, a + b]) BetaRegularized[Subscript[z, 1], a, b]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "2"]], "}"]]], RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"], ",", "a", ",", "b"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]], " "]], RowBox[List["Gamma", "[", "b", "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["z", "1", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["z", "2", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], "+", " ", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], RowBox[List["Gamma", "[", "b", "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["z", "2", "a"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["z", "1", "a"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], "2"], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z", "2"], ",", "a", ",", "b"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "2"]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z", "1"], ",", "a", ",", "b"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 2 </mn> </msup> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "1"], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> a </mi> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> a </mi> </msubsup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[SubscriptBox["z", "1"], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> BetaRegularized </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> BetaRegularized </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> BetaRegularized </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "2"]], "}"]]]]], RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"], ",", "a_", ",", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "1", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["zz", "2", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]]]]]], ")"]]]], RowBox[List["Gamma", "[", "b", "]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "2", "a"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]]]], "-", RowBox[List[SubsuperscriptBox["zz", "1", "a"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a", ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]]]]]], ")"]]]], RowBox[List["Gamma", "[", "b", "]"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], "2"], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["zz", "2"], ",", "a", ",", "b"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "2"]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "b"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["zz", "1"], ",", "a", ",", "b"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|