|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.41.06.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CatalanNumber[z] \[Proportional] CatalanNumber[Subscript[z, 0]]
(1 + (Log[4] + PolyGamma[1/2 + Subscript[z, 0]] -
PolyGamma[2 + Subscript[z, 0]]) (z - Subscript[z, 0]) +
(1/2) ((Log[4] + PolyGamma[1/2 + Subscript[z, 0]] -
PolyGamma[2 + Subscript[z, 0]])^2 + PolyGamma[1,
1/2 + Subscript[z, 0]] - PolyGamma[1, 2 + Subscript[z, 0]])
(z - Subscript[z, 0])^2 + O[(z - Subscript[z, 0])^3]) /;
!(Element[-Subscript[z, 0] - 1/2, Integers] && -Subscript[z, 0] - 1/2 >= 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["CatalanNumber", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["CatalanNumber", "[", SubscriptBox["z", "0"], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["z", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", SubscriptBox["z", "0"]]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], " ", "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["z", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", SubscriptBox["z", "0"]]], "]"]]]], ")"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["z", "0"]]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["2", "+", SubscriptBox["z", "0"]]]]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"], "]"]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["z", "0"]]], "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["z", "0"]]], "-", FractionBox["1", "2"]]], "\[GreaterEqual]", "0"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", CatalanNumber] </annotation> </semantics> <mi> z </mi> </msub> <mo> ∝ </mo> <mrow> <msub> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", CatalanNumber] </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ∉ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> CatalanNumber </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <ci> CatalanNumber </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["CatalanNumber", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["CatalanNumber", "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["zz", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", SubscriptBox["zz", "0"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["zz", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", SubscriptBox["zz", "0"]]], "]"]]]], ")"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["zz", "0"]]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["2", "+", SubscriptBox["zz", "0"]]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], "3"]]], ")"]]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["zz", "0"]]], "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["zz", "0"]]], "-", FractionBox["1", "2"]]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|