Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











CatalanNumber






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > CatalanNumber[n] > Series representations > Generalized power series > Expansions at z==z0/;z0!=-n-1/2





http://functions.wolfram.com/06.41.06.0007.01









  


  










Input Form





CatalanNumber[z] == (2^(2 Subscript[z, 0])/ (Sqrt[Pi] Gamma[Subscript[z, 0] + 2])) Sum[(j + 1) Subscript[d, k - j] Sum[(((-1)^r Binomial[j, r])/(1 + r)) Subscript[p, r, j] (z - Subscript[z, 0])^k, {r, 0, j}], {k, 0, Infinity}, {j, 0, k}] /; Subscript[a, k] == (1/k!) Derivative[k][Gamma][Subscript[z, 0] + 1/2] && Subscript[b, k] == Log[4]^k/k! && Subscript[c, k] == Derivative[k][Gamma][Subscript[z, 0] + 2]/k! && Subscript[d, k] == Sum[Subscript[a, n] Subscript[b, k - n], {n, 0, k}] && Subscript[p, j, 0] == 1 && Subscript[p, j, k] == (1/(Gamma[Subscript[z, 0] + 2] k)) Sum[(j m - k + m) Subscript[c, m] Subscript[p, j, k - m], {m, 1, k}] && Element[k, Integers] && k >= 0 && !(Element[-Subscript[z, 0] - 1/2, Integers] && -Subscript[z, 0] - 1/2 >= 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["CatalanNumber", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["2", RowBox[List["2", " ", SubscriptBox["z", "0"]]]], RowBox[List[SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["z", "0"], "+", "2"]], "]"]], " "]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], SubscriptBox["d", RowBox[List["k", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "j"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "r"]], "]"]]]], RowBox[List["1", "+", "r"]]], SubscriptBox["p", RowBox[List["r", ",", "j"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "k"], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[" ", RowBox[List["k", "!"]]]]], RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[SubscriptBox["z", "0"], "+", FractionBox["1", "2"]]], "]"]]]]]], "\[And]", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "k"], RowBox[List["k", "!"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[SubscriptBox["z", "0"], "+", "2"]], "]"]], RowBox[List[" ", RowBox[List["k", "!"]]]]]]], "\[And]", RowBox[List[SubscriptBox["d", "k"], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "k"], RowBox[List[SubscriptBox["a", "n"], SubscriptBox["b", RowBox[List["k", "-", "n"]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["z", "0"], "+", "2"]], "]"]], " ", "k"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["c", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["z", "0"]]], "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["z", "0"]]], "-", FractionBox["1", "2"]]], "\[GreaterEqual]", "0"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, CatalanNumber] </annotation> </semantics> <mi> z </mi> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> d </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> <mtr> <mtd> <mi> r </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;r&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> r </mi> <mo> , </mo> <mi> j </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mi> &#915; </mi> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;k&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mi> log </mi> <mi> k </mi> </msup> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mi> &#915; </mi> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;k&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> d </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> &#8290; </mo> <msub> <mi> b </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> </msub> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> c </mi> <mi> m </mi> </msub> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8713; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> CatalanNumber </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> d </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> Binomial </ci> <ci> j </ci> <ci> r </ci> </apply> <apply> <power /> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> r </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </list> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <ci> k </ci> </list> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> d </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> j </ci> <ci> m </ci> </apply> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <ci> &#8469; </ci> </apply> <apply> <notin /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["CatalanNumber", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", SubscriptBox["zz", "0"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], " ", SubscriptBox["d", RowBox[List["k", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "j"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "r"]], "]"]]]], ")"]], " ", SubscriptBox["p", RowBox[List["r", ",", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List["1", "+", "r"]]]]]]]]]]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["zz", "0"], "+", "2"]], "]"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[SubscriptBox["zz", "0"], "+", FractionBox["1", "2"]]], "]"]], RowBox[List["k", "!"]]]]], "&&", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "k"], RowBox[List["k", "!"]]]]], "&&", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[SubscriptBox["zz", "0"], "+", "2"]], "]"]], RowBox[List["k", "!"]]]]], "&&", RowBox[List[SubscriptBox["d", "k"], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "k"], RowBox[List[SubscriptBox["a", "n"], " ", SubscriptBox["b", RowBox[List["k", "-", "n"]]]]]]]]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["c", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["zz", "0"], "+", "2"]], "]"]], " ", "k"]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["zz", "0"]]], "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["zz", "0"]]], "-", FractionBox["1", "2"]]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02