Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











CatalanNumber






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > CatalanNumber[n] > Series representations > Asymptotic series expansions





http://functions.wolfram.com/06.41.06.0013.01









  


  










Input Form





CatalanNumber[z] \[Proportional] (2^(2 z)/(Sqrt[Pi] z^(3/2))) (1 - 9/(8 z) + 145/(128 z^2) - 1155/(1024 z^3) + 36939/(32768 z^4) - 295911/(262144 z^5) + 4735445/(4194304 z^6) - 37844235/(33554432 z^7) + 2421696563/(2147483648 z^8) - 19402289907/(17179869184 z^9) + O[1/z^10]) /; Abs[Arg[z + 1/2]] < Pi && (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["CatalanNumber", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "z"]]], " "]], RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox["9", RowBox[List["8", " ", "z"]]], "+", FractionBox["145", RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox["1155", RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]], "+", FractionBox["36939", RowBox[List["32768", " ", SuperscriptBox["z", "4"]]]], "-", FractionBox["295911", RowBox[List["262144", " ", SuperscriptBox["z", "5"]]]], "+", FractionBox["4735445", RowBox[List["4194304", " ", SuperscriptBox["z", "6"]]]], "-", FractionBox["37844235", RowBox[List["33554432", " ", SuperscriptBox["z", "7"]]]], "+", FractionBox["2421696563", RowBox[List["2147483648", " ", SuperscriptBox["z", "8"]]]], "-", FractionBox["19402289907", RowBox[List["17179869184", " ", SuperscriptBox["z", "9"]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "10"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["z", "+", FractionBox["1", "2"]]], "]"]], "]"]], "<", "\[Pi]"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, CatalanNumber] </annotation> </semantics> <mi> z </mi> </msub> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 9 </mn> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 145 </mn> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1155 </mn> <mrow> <mn> 1024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 36939 </mn> <mrow> <mn> 32768 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 295911 </mn> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 4735445 </mn> <mrow> <mn> 4194304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 37844235 </mn> <mrow> <mn> 33554432 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 2421696563 </mn> <mrow> <mn> 2147483648 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 19402289907 </mn> <mrow> <mn> 17179869184 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> CatalanNumber </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 145 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1155 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 36939 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 32768 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 295911 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4735445 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4194304 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 37844235 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 33554432 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2421696563 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2147483648 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 19402289907 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 17179869184 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <pi /> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["CatalanNumber", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox["9", RowBox[List["8", " ", "z"]]], "+", FractionBox["145", RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox["1155", RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]], "+", FractionBox["36939", RowBox[List["32768", " ", SuperscriptBox["z", "4"]]]], "-", FractionBox["295911", RowBox[List["262144", " ", SuperscriptBox["z", "5"]]]], "+", FractionBox["4735445", RowBox[List["4194304", " ", SuperscriptBox["z", "6"]]]], "-", FractionBox["37844235", RowBox[List["33554432", " ", SuperscriptBox["z", "7"]]]], "+", FractionBox["2421696563", RowBox[List["2147483648", " ", SuperscriptBox["z", "8"]]]], "-", FractionBox["19402289907", RowBox[List["17179869184", " ", SuperscriptBox["z", "9"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "10"]], "]"]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["z", "+", FractionBox["1", "2"]]], "]"]], "]"]], "<", "\[Pi]"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02