| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/06.41.16.0010.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | CatalanNumber[z - n]/CatalanNumber[z] == 
  Product[(-1 + k - z)/(1 + 2 k - 2 z), {k, 0, n - 1}]/2^n /; 
 Element[n, Integers] && n > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[FractionBox[RowBox[List["CatalanNumber", "[", RowBox[List["z", "-", "n"]], "]"]], RowBox[List["CatalanNumber", "[", "z", "]"]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List["-", "n"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", "z"]], RowBox[List["1", "+", RowBox[List["2", " ", "k"]], "-", RowBox[List["2", " ", "z"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mfrac>  <msub>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", CatalanNumber] </annotation>  </semantics>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msub>  <msub>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", CatalanNumber] </annotation>  </semantics>  <mi> z </mi>  </msub>  </mfrac>  <mo>  </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mfrac>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <msup>  <semantics>  <mi> ℕ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation>  </semantics>  <mo> + </mo>  </msup>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <times />  <apply>  <ci> CatalanNumber </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> CatalanNumber </ci>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <product />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <apply>  <ci> SuperPlus </ci>  <integers />  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[RowBox[List["CatalanNumber", "[", RowBox[List["z_", "-", "n_"]], "]"]], RowBox[List["CatalanNumber", "[", "z_", "]"]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["-", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", "z"]], RowBox[List["1", "+", RowBox[List["2", " ", "k"]], "-", RowBox[List["2", " ", "z"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |