|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.25.21.0033.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z Sin[b z] Erf[a z], z] == (1/(4 a^2 b^2 Sqrt[Pi]))
(E^(-(b^2/(4 a^2)) - I b z - a^2 z^2) (-2 a b E^(b^2/(4 a^2)) -
2 a b E^((1/4) b (b/a^2 + 8 I z)) - 2 a^2 E^(b^2/(4 a^2) + a^2 z^2)
Sqrt[Pi] (-I + b z + E^(2 I b z) (I + b z)) Erf[a z] -
I (2 a^2 + b^2) E^(z (I b + a^2 z)) Sqrt[Pi] Erf[(I b + 2 a^2 z)/(2 a)] +
2 a^2 E^(z (I b + a^2 z)) Sqrt[Pi] Erfi[b/(2 a) + I a z] +
b^2 E^(z (I b + a^2 z)) Sqrt[Pi] Erfi[b/(2 a) + I a z]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Erf", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], "-", RowBox[List["2", " ", "a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", RowBox[List["b", " ", "z"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <exp /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <exp /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <imaginaryi /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", RowBox[List["Sin", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Erf", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], "-", RowBox[List["2", " ", "a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", RowBox[List["b", " ", "z"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", SqrtBox["\[Pi]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|