  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/06.27.10.0003.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Erfc[z] == 
 1 - (((2 z)/Sqrt[Pi]) 
    (1/(1 - (2 z^2)/(3 + (4 z^2)/(5 - (6 z^2)/
           (7 + (8 z^2)/(9 - (10 z^2)/(11 + (12 z^2)/(13 - 
                  \[Ellipsis])))))))))/E^z^2 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["Erfc", "[", "z", "]"]], "\[Equal]", RowBox[List["1", "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "z"]], " "]], SqrtBox["\[Pi]"]], SuperscriptBox["\[ExponentialE]", RowBox[List["-", SuperscriptBox["z", "2"]]]], FractionBox["1", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", "2"]]], RowBox[List["3", "+", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], RowBox[List["5", "-", FractionBox[RowBox[List["6", " ", SuperscriptBox["z", "2"]]], RowBox[List["7", "+", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "2"]]], RowBox[List["9", "-", FractionBox[RowBox[List["10", " ", SuperscriptBox["z", "2"]]], RowBox[List["11", "+", FractionBox[RowBox[List["12", " ", SuperscriptBox["z", "2"]]], RowBox[List["13", "-", "\[Ellipsis]"]]]]]]]]]]]]]]]]]]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mi> erfc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mtext>   </mtext>  </mrow>  <msqrt>  <mi> π </mi>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msup>  <mo> ⁢ </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mstyle scriptlevel='0'>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mstyle scriptlevel='0'>  <mrow>  <mn> 3 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mstyle scriptlevel='0'>  <mrow>  <mn> 5 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mstyle scriptlevel='0'>  <mrow>  <mn> 7 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mstyle scriptlevel='0'>  <mrow>  <mn> 9 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 10 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mstyle scriptlevel='0'>  <mrow>  <mn> 11 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mstyle scriptlevel='0'>  <mrow>  <mn> 13 </mn>  <mo> - </mo>  <mo> … </mo>  </mrow>  </mstyle>  </mfrac>  </mrow>  </mstyle>  </mfrac>  </mrow>  </mstyle>  </mfrac>  </mrow>  </mstyle>  </mfrac>  </mrow>  </mstyle>  </mfrac>  </mrow>  </mstyle>  </mfrac>  </mstyle>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> Erfc </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <power />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 3 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 5 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 7 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 9 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 10 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 11 </cn>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 13 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> … </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Erfc", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", SuperscriptBox["z", "2"]]]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", "2"]]], RowBox[List["3", "+", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], RowBox[List["5", "-", FractionBox[RowBox[List["6", " ", SuperscriptBox["z", "2"]]], RowBox[List["7", "+", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "2"]]], RowBox[List["9", "-", FractionBox[RowBox[List["10", " ", SuperscriptBox["z", "2"]]], RowBox[List["11", "+", FractionBox[RowBox[List["12", " ", SuperscriptBox["z", "2"]]], RowBox[List["13", "-", "\[Ellipsis]"]]]]]]]]]]]]]]]]]]]], ")"]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |