|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.27.21.0036.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z Sin[b z^2] Erfc[c + a z], z] == (1/(4 b (a^4 + b^2)))
(((-a) (a^2 - I b) Sqrt[a^2 + I b] E^((a^2 c^2)/(a^2 + I b))
Erf[(a c + a^2 z + I b z)/Sqrt[a^2 + I b]] -
(a^2 + I b) (2 (a^2 - I b) E^c^2 Cos[b z^2] Erfc[c + a z] -
I a Sqrt[a^2 - I b] E^((a^2 c^2)/(a^2 - I b))
Erfi[(I a c + I a^2 z + b z)/Sqrt[a^2 - I b]]))/E^c^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", RowBox[List["Sin", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], RowBox[List["Erfc", "[", RowBox[List["c", "+", RowBox[List["a", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "2"]]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox["c", "2"]], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["c", "+", RowBox[List["a", " ", "z"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["b", " ", "z"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <sin /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> a </ci> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", RowBox[List["Sin", "[", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["c_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox["c", "2"]], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["c", "+", RowBox[List["a", " ", "z"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["b", " ", "z"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "2"]]], ")"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|