|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.27.21.0041.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^n Cos[b z] Erfc[a z], z] == (I/2) b^(-1 - n)
(I^n Erfc[a z] (-Gamma[1 + n, (-I) b z] + (-1)^n Gamma[1 + n, I b z]) +
((a n!)/Sqrt[Pi]) Exp[-(b^2/(4 a^2))]
((-(-I)^n) Sum[((I b)^m/m!) (-a^2)^((1/2) (-1 - m))
Sum[Binomial[m, k] (-(((-I) b)/(2 Sqrt[-a^2])))^(m - k)
(Sqrt[-a^2] z - (I b)/(2 Sqrt[-a^2]))^(1 + k)
(-(Sqrt[-a^2] z - (I b)/(2 Sqrt[-a^2]))^2)^((1/2) (-1 - k))
Gamma[(1 + k)/2, -(Sqrt[-a^2] z - (I b)/(2 Sqrt[-a^2]))^2],
{k, 0, m}], {m, 0, n}] +
I^n Sum[(((-I) b)^m/m!) (-a^2)^((1/2) (-1 - m))
Sum[Binomial[m, k] (-((I b)/(2 Sqrt[-a^2])))^(m - k)
(Sqrt[-a^2] z + (I b)/(2 Sqrt[-a^2]))^(1 + k)
(-(Sqrt[-a^2] z + (I b)/(2 Sqrt[-a^2]))^2)^((1/2) (-1 - k))
Gamma[(1 + k)/2, -(Sqrt[-a^2] z + (I b)/(2 Sqrt[-a^2]))^2],
{k, 0, m}], {m, 0, n}])) /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["\[ImaginaryI]", "2"], " ", SuperscriptBox["b", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], " ", RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["a", " ", RowBox[List["n", "!"]]]], SqrtBox["\[Pi]"]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "n"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], "m"], RowBox[List["m", "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["a", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], "m"], RowBox[List["m", "!"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["a", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]]]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅈ </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅈ </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> n </ci> </apply> <apply> <ci> Erfc </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> a </ci> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["b", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], " ", RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", " ", RowBox[List["n", "!"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["a", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], RowBox[List["m", "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["a", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["a", "2"]]]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], RowBox[List["m", "!"]]]]]]]]], ")"]]]], SqrtBox["\[Pi]"]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|