Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfc






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfc[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions > Involving sinh





http://functions.wolfram.com/06.27.21.0071.01









  


  










Input Form





Integrate[Sinh[b z^2] Erfc[a z], z] == (Sqrt[Pi] (-Erf[Sqrt[b] z] + Erfi[Sqrt[b] z]))/(4 Sqrt[b]) - (1/(2 Sqrt[Pi] b)) (Sum[(a^(2 k + 1)/((-b)^k ((1 + 2 k) k!))) Gamma[1 + k, b z^2], {k, 0, Infinity}] + Sum[(a^(2 k + 1)/(b^k ((1 + 2 k) k!))) Gamma[1 + k, (-b) z^2], {k, 0, Infinity}])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Erf", "[", RowBox[List[SqrtBox["b"], " ", "z"]], "]"]]]], "+", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["b"], " ", "z"]], "]"]]]], ")"]]]], RowBox[List["4", " ", SqrtBox["b"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", SqrtBox["\[Pi]"], "b"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], RowBox[List["-", "k"]]], SuperscriptBox["a", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], RowBox[List["k", "!"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["b", RowBox[List["-", "k"]]], SuperscriptBox["a", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], RowBox[List["k", "!"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List[RowBox[List["-", "b"]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mi> b </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Erf", "[", RowBox[List[SqrtBox["b"], " ", "z"]], "]"]]]], "+", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["b"], " ", "z"]], "]"]]]], ")"]]]], RowBox[List["4", " ", SqrtBox["b"]]]], "-", FractionBox[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List[RowBox[List["-", "b"]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", "b"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29