Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfi[z] > Series representations > Generalized power series > Expansions at generic point z==z0 > For the function itself





http://functions.wolfram.com/06.28.06.0012.01









  


  










Input Form





Erfi[z] == Erfi[Subscript[z, 0]] + (2/Sqrt[Pi]) Exp[Subscript[z, 0]^2] Sum[(Pochhammer[2 j - k + 2, 2 (k - j - 1)]/(k! (k - j - 1)! (2 Subscript[z, 0])^(k - 2 j - 1))) (z - Subscript[z, 0])^k, {k, 1, Infinity}, {j, 0, k - 1}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Erfi", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["Erfi", "[", SubscriptBox["z", "0"], "]"]], "+", RowBox[List[FractionBox["2", SqrtBox["\[Pi]"]], RowBox[List["Exp", "[", SubsuperscriptBox["z", "0", "2"], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", "j"]], "-", "k", " ", "+", "2"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "1"]], ")"]]]]]], "]"]], RowBox[List[RowBox[List["k", "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j", "-", "1"]], ")"]], "!"]], SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["z", "0"]]], ")"]], RowBox[List["k", "-", RowBox[List["2", " ", "j"]], "-", "1"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </msup> <mtext> </mtext> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <mtext> </mtext> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;j&quot;]], &quot;-&quot;, &quot;k&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;j&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]]]]], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Erfi </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> Erfi </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Erfi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Erfi", "[", SubscriptBox["zz", "0"], "]"]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", SubsuperscriptBox["zz", "0", "2"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "j"]], "-", "k", "+", "2"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "1"]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["k", "-", RowBox[List["2", " ", "j"]], "-", "1"]]]]]]]]]]]], SqrtBox["\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02