|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.28.21.0019.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^3 E^(b z) Erfi[a z], z] == (1/(8 a^6 b^4 Sqrt[Pi]))
((-2 a b E^((b + 2 a^2 z)^2/(4 a^2)) (b^4 - 2 a^2 b^2 (-1 + b z) +
4 a^4 (6 + b z (-3 + b z))) +
Sqrt[Pi] (8 a^6 E^(b^2/(4 a^2) + b z) (-6 + b z (6 + b z (-3 + b z)))
Erfi[a z] + (48 a^6 + 12 a^4 b^2 + b^6) Erfi[b/(2 a) + a z]))/
E^(b^2/(4 a^2)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["b", "4"], " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]], "+", RowBox[List["b", " ", "z"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["48", " ", SuperscriptBox["a", "6"]]], "+", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["b", "6"]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["a", " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 6 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <exp /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <cn type='integer'> -6 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <exp /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", "z_"]]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]], "+", RowBox[List["b", " ", "z"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["48", " ", SuperscriptBox["a", "6"]]], "+", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["b", "6"]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["a", " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["b", "4"], " ", SqrtBox["\[Pi]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|