Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function and a power function > Involving exp and power





http://functions.wolfram.com/06.28.21.0025.01









  


  










Input Form





Integrate[z^3 E^(b z^2) Erfi[a z], z] == (1/(2 b^2)) ((a b z^3 (E^((a^2 + b) z^2) Sqrt[(-(a^2 + b)) z^2] - (1/2) Sqrt[Pi] (-1 + Erf[Sqrt[(-(a^2 + b)) z^2]])))/ (Sqrt[Pi] ((-(a^2 + b)) z^2)^(3/2)) + E^(b z^2) (-1 + b z^2) Erfi[a z] + (a Erfi[Sqrt[a^2 + b] z])/Sqrt[a^2 + b])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", " ", "b", " ", SuperscriptBox["z", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Erf", "[", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]]]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", FractionBox[RowBox[List["a", " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mfrac> <msqrt> <mi> &#960; </mi> </msqrt> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> a </ci> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Erf </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["a", " ", "b", " ", SuperscriptBox["z", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Erf", "[", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]]]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", FractionBox[RowBox[List["a", " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]]]], RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29