|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.28.21.0045.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^3 Cos[b z] Erfi[a z], z] == (1/(16 a^6 b^4 Sqrt[Pi]))
((48 I a^5 b E^(a^2 z^2) - 4 I a^3 b^3 E^(a^2 z^2) +
2 I a b^5 E^(a^2 z^2) - 48 I a^5 b E^(z (2 I b + a^2 z)) +
4 I a^3 b^3 E^(z (2 I b + a^2 z)) - 2 I a b^5 E^(z (2 I b + a^2 z)) -
24 a^5 b^2 E^(a^2 z^2) z + 4 a^3 b^4 E^(a^2 z^2) z -
24 a^5 b^2 E^(z (2 I b + a^2 z)) z + 4 a^3 b^4 E^(z (2 I b + a^2 z)) z -
8 I a^5 b^3 E^(a^2 z^2) z^2 + 8 I a^5 b^3 E^(z (2 I b + a^2 z)) z^2 -
I (48 a^6 - 12 a^4 b^2 - b^6) E^((1/4) b (b/a^2 + 4 I z)) Sqrt[Pi]
Erf[b/(2 a) + I a z] + 48 a^6 E^((1/4) b (b/a^2 + 4 I z)) Sqrt[Pi]
Erfi[(I b + 2 a^2 z)/(2 a)] - 12 a^4 b^2 E^((1/4) b (b/a^2 + 4 I z))
Sqrt[Pi] Erfi[(I b + 2 a^2 z)/(2 a)] - b^6 E^((1/4) b (b/a^2 + 4 I z))
Sqrt[Pi] Erfi[(I b + 2 a^2 z)/(2 a)] + 8 a^6 Sqrt[Pi] Erfi[a z]
(3 (-2 - 2 I b z + b^2 z^2 + E^(2 I b z) (-2 + 2 I b z + b^2 z^2)) +
2 b^3 E^(I b z) z^3 Sin[b z]))/E^(I b z))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["16", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["b", "4"], " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", SuperscriptBox["a", "6"]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "6"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]], "+", RowBox[List["48", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 6 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 48 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erf </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", SuperscriptBox["a", "6"]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "6"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]], "+", RowBox[List["48", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["16", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["b", "4"], " ", SqrtBox["\[Pi]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|