html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Erfi

 http://functions.wolfram.com/06.28.21.0045.01

 Input Form

 Integrate[z^3 Cos[b z] Erfi[a z], z] == (1/(16 a^6 b^4 Sqrt[Pi])) ((48 I a^5 b E^(a^2 z^2) - 4 I a^3 b^3 E^(a^2 z^2) + 2 I a b^5 E^(a^2 z^2) - 48 I a^5 b E^(z (2 I b + a^2 z)) + 4 I a^3 b^3 E^(z (2 I b + a^2 z)) - 2 I a b^5 E^(z (2 I b + a^2 z)) - 24 a^5 b^2 E^(a^2 z^2) z + 4 a^3 b^4 E^(a^2 z^2) z - 24 a^5 b^2 E^(z (2 I b + a^2 z)) z + 4 a^3 b^4 E^(z (2 I b + a^2 z)) z - 8 I a^5 b^3 E^(a^2 z^2) z^2 + 8 I a^5 b^3 E^(z (2 I b + a^2 z)) z^2 - I (48 a^6 - 12 a^4 b^2 - b^6) E^((1/4) b (b/a^2 + 4 I z)) Sqrt[Pi] Erf[b/(2 a) + I a z] + 48 a^6 E^((1/4) b (b/a^2 + 4 I z)) Sqrt[Pi] Erfi[(I b + 2 a^2 z)/(2 a)] - 12 a^4 b^2 E^((1/4) b (b/a^2 + 4 I z)) Sqrt[Pi] Erfi[(I b + 2 a^2 z)/(2 a)] - b^6 E^((1/4) b (b/a^2 + 4 I z)) Sqrt[Pi] Erfi[(I b + 2 a^2 z)/(2 a)] + 8 a^6 Sqrt[Pi] Erfi[a z] (3 (-2 - 2 I b z + b^2 z^2 + E^(2 I b z) (-2 + 2 I b z + b^2 z^2)) + 2 b^3 E^(I b z) z^3 Sin[b z]))/E^(I b z))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["16", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["b", "4"], " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", SuperscriptBox["a", "6"]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "6"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]], "+", RowBox[List["48", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]

 MathML Form

 z 3 cos ( b z ) erfi ( a z ) z 1 16 a 6 b 4 π ( - b z ( 48 1 4 b ( b a 2 + 4 z ) π erfi ( 2 z a 2 + b 2 a ) a 6 + 8 π erfi ( a z ) ( 2 b 3 b z sin ( b z ) z 3 + 3 ( b 2 z 2 - 2 b z + 2 b z ( b 2 z 2 + 2 b z - 2 ) - 2 ) ) a 6 - 48 b z ( z a 2 + 2 b ) a 5 - 8 b 3 a 2 z 2 z 2 a 5 + 8 b 3 z ( z a 2 + 2 b ) z 2 a 5 + 48 b a 2 z 2 a 5 - 24 b 2 a 2 z 2 z a 5 - 24 b 2 z ( z a 2 + 2 b ) z a 5 - 12 b 2 1 4 b ( b a 2 + 4 z ) π erfi ( 2 z a 2 + b 2 a ) a 4 - 4 b 3 a 2 z 2 a 3 + 4 b 3 z ( z a 2 + 2 b ) a 3 + 4 b 4 a 2 z 2 z a 3 + 4 b 4 z ( z a 2 + 2 b ) z a 3 - 2 b 5 z ( z a 2 + 2 b ) a + 2 b 5 a 2 z 2 a - ( 48 a 6 - 12 b 2 a 4 - b 6 ) 1 4 b ( b a 2 + 4 z ) π erf ( b 2 a + a z ) - b 6 1 4 b ( b a 2 + 4 z ) π erfi ( 2 z a 2 + b 2 a ) ) ) z z 3 b z Erfi a z 1 16 a 6 b 4 1 2 -1 -1 b z 48 1 4 b b a 2 -1 4 z 1 2 Erfi 2 z a 2 b 2 a -1 a 6 8 1 2 Erfi a z 2 b 3 b z b z z 3 3 b 2 z 2 -1 2 b z 2 b z b 2 z 2 2 b z -2 -2 a 6 -1 48 b z z a 2 2 b a 5 -1 8 b 3 a 2 z 2 z 2 a 5 8 b 3 z z a 2 2 b z 2 a 5 48 b a 2 z 2 a 5 -1 24 b 2 a 2 z 2 z a 5 -1 24 b 2 z z a 2 2 b z a 5 -1 12 b 2 1 4 b b a 2 -1 4 z 1 2 Erfi 2 z a 2 b 2 a -1 a 4 -1 4 b 3 a 2 z 2 a 3 4 b 3 z z a 2 2 b a 3 4 b 4 a 2 z 2 z a 3 4 b 4 z z a 2 2 b z a 3 -1 2 b 5 z z a 2 2 b a 2 b 5 a 2 z 2 a -1 48 a 6 -1 12 b 2 a 4 -1 b 6 1 4 b b a 2 -1 4 z 1 2 Erf b 2 a -1 a z -1 b 6 1 4 b b a 2 -1 4 z 1 2 Erfi 2 z a 2 b 2 a -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["48", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]]]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", "z"]], "-", RowBox[List["24", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", "z"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "5"], " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["48", " ", SuperscriptBox["a", "6"]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "6"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "a"]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]]], "]"]]]], "+", RowBox[List["48", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List["12", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "6"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "b", " ", RowBox[List["(", RowBox[List[FractionBox["b", SuperscriptBox["a", "2"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "z"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["8", " ", SuperscriptBox["a", "6"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["16", " ", SuperscriptBox["a", "6"], " ", SuperscriptBox["b", "4"], " ", SqrtBox["\[Pi]"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29