| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/06.28.21.0056.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[z^n E^(b z) Sin[c z] Erfi[a z], z] == 
  (1/2) I (-b - I c)^(-1 - n) Erfi[a z] Gamma[1 + n, (-b - I c) z] - 
   (1/2) I (-b + I c)^(-1 - n) Erfi[a z] Gamma[1 + n, (-b + I c) z] - 
   (1/(2 Sqrt[Pi])) ((I a (-b + I c)^(-1 - n) n! 
      Sum[(1/m!) ((-(b - I c))^m (a^2)^((1/2) (-1 - m)) 
         Sum[Binomial[m, k] (-((b - I c)/(2 Sqrt[a^2])))^(m - k) 
           (Sqrt[a^2] z + (b - I c)/(2 Sqrt[a^2]))^(1 + k) 
           (-(Sqrt[a^2] z + (b - I c)/(2 Sqrt[a^2]))^2)^((1/2) (-1 - k)) 
           Gamma[(1 + k)/2, -(Sqrt[a^2] z + (b - I c)/(2 Sqrt[a^2]))^2], 
          {k, 0, m}]), {m, 0, n}])/E^((b - I c)^2/(4 a^2))) + 
   (1/(2 Sqrt[Pi])) ((I a (-b - I c)^(-1 - n) n! 
      Sum[(1/m!) ((-(b + I c))^m (a^2)^((1/2) (-1 - m)) 
         Sum[Binomial[m, k] (-((b + I c)/(2 Sqrt[a^2])))^(m - k) 
           (Sqrt[a^2] z + (b + I c)/(2 Sqrt[a^2]))^(1 + k) 
           (-(Sqrt[a^2] z + (b + I c)/(2 Sqrt[a^2]))^2)^((1/2) (-1 - k)) 
           Gamma[(1 + k)/2, -(Sqrt[a^2] z + (b + I c)/(2 Sqrt[a^2]))^2], 
          {k, 0, m}]), {m, 0, n}])/E^((b + I c)^2/(4 a^2))) /; 
 Element[n, Integers] && n >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List["m", "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], ")"]]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List["m", "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], ")"]]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> m </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> m </mi>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  <mo> + </mo>  <mrow>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  <mo> + </mo>  <mrow>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  <mo> + </mo>  <mrow>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> m </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> m </mi>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  <mo> + </mo>  <mrow>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  <mo> + </mo>  <mrow>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  </mrow>  </mfrac>  <mo> + </mo>  <mrow>  <msqrt>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <imaginaryi />  <apply>  <ci> Erfi </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <imaginaryi />  <apply>  <ci> Erfi </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> m </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <factorial />  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> m </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> m </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <factorial />  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> m </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", "z_"]]], " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], RowBox[List["m", "!"]]]]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], RowBox[List["m", "!"]]]]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |