Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving power, exponential and trigonometric functions > Involving power, exp and cos





http://functions.wolfram.com/06.28.21.0066.01









  


  










Input Form





Integrate[z^2 E^(b z) Cos[c z] Erfi[a z], z] == (1/(8 a^4 Sqrt[Pi])) (E^(a^2 z^2) ((1/(b - I c)^3) (2 a (b - I c) E^((b - I c) z) ((b - I c)^2 + a^2 (4 - 2 b z + 2 I c z)) + 4 a^4 E^(z (b - I c - a^2 z)) Sqrt[Pi] (2 - 2 (b - I c) z + (b - I c)^2 z^2) Erfi[a z] - (8 a^4 + 2 a^2 (b - I c)^2 + (b - I c)^4) E^(-((b - I c)^2/(4 a^2)) - a^2 z^2) Sqrt[Pi] Erfi[(b - I c)/(2 a) + a z]) + (1/(b + I c)^3) (2 a (b + I c) E^((b + I c) z) ((b + I c)^2 - 2 a^2 (-2 + b z + I c z)) + 4 a^4 E^(z (b + I c - a^2 z)) Sqrt[Pi] (2 - 2 (b + I c) z + (b + I c)^2 z^2) Erfi[a z] - (8 a^4 + 2 a^2 (b + I c)^2 + (b + I c)^4) E^(-((b + I c)^2/(4 a^2)) - a^2 z^2) Sqrt[Pi] Erfi[(b + I c)/(2 a) + a z])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["8", " ", SuperscriptBox["a", "4"], " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "3"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "4"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", "a"]]], "+", RowBox[List["a", " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "3"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["b", " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "4"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", "a"]]], "+", RowBox[List["a", " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", "z_"]]], " ", RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "4"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", "a"]]], "+", RowBox[List["a", " ", "z"]]]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "3"]], "+", FractionBox[RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["b", " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "4"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List[FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], RowBox[List["2", " ", "a"]]], "+", RowBox[List["a", " ", "z"]]]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], "3"]]]], ")"]]]], RowBox[List["8", " ", SuperscriptBox["a", "4"], " ", SqrtBox["\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29