Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving power, exponential and trigonometric functions > Involving power, exp and cos





http://functions.wolfram.com/06.28.21.0069.01









  


  










Input Form





Integrate[z E^(b z^2) Cos[c z^2] Erfi[a z], z] == (a b z Sqrt[(-(a^2 + b - I c)) z^2] - I a c z Sqrt[(-(a^2 + b - I c)) z^2] + a b z Sqrt[(-(a^2 + b + I c)) z^2] + I a c z Sqrt[(-(a^2 + b + I c)) z^2] - a (b + I c) z Sqrt[(-(a^2 + b + I c)) z^2] Erf[Sqrt[(-(a^2 + b - I c)) z^2]] - a (b - I c) z Sqrt[(-(a^2 + b - I c)) z^2] Erf[Sqrt[(-(a^2 + b + I c)) z^2]] + 2 b E^(b z^2) Sqrt[(-(a^2 + b - I c)) z^2] Sqrt[(-(a^2 + b + I c)) z^2] Cos[c z^2] Erfi[a z] + 2 c E^(b z^2) Sqrt[(-(a^2 + b - I c)) z^2] Sqrt[(-(a^2 + b + I c)) z^2] Erfi[a z] Sin[c z^2])/ (4 (b^2 + c^2) Sqrt[(-(a^2 + b - I c)) z^2] Sqrt[(-(a^2 + b + I c)) z^2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], RowBox[List["Cos", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["a", " ", "b", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "c", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["a", " ", "b", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "c", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erf", "[", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erf", "[", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erf </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erf </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> b </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <ci> a </ci> <ci> c </ci> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <ci> a </ci> <ci> b </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> c </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]]], " ", RowBox[List["Cos", "[", RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["a", " ", "b", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "c", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["a", " ", "b", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "c", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erf", "[", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erf", "[", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29