Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions and a power function > Involving cosh and power





http://functions.wolfram.com/06.28.21.0086.01









  


  










Input Form





Integrate[z^n Cosh[b z] Erfi[a z], z] == ((-1)^n/(b^(2 n) (2 b Sqrt[Pi]))) Exp[-(b^2/(4 a^2))] ((-E^(b^2/(4 a^2))) Sqrt[Pi] Erfi[a z] (-b)^n (Gamma[1 + n, b z] - (-1)^n Gamma[1 + n, (-b) z]) + a b^n n! Sum[((-b)^m/m!) (a^2)^((1/2) (-1 - m)) Sum[Binomial[m, k] (-(b/(2 Sqrt[a^2])))^(m - k) (Sqrt[a^2] z + b/(2 Sqrt[a^2]))^(1 + k) (-(Sqrt[a^2] z + b/(2 Sqrt[a^2]))^2)^((1/2) (-1 - k)) Gamma[(1 + k)/2, -(Sqrt[a^2] z + b/(2 Sqrt[a^2]))^2], {k, 0, m}], {m, 0, n}] - a (-b)^n n! Sum[(b^m/m!) (a^2)^((1/2) (-1 - m)) Sum[Binomial[m, k] (b/(2 Sqrt[a^2]))^(m - k) (Sqrt[a^2] z - b/(2 Sqrt[a^2]))^(1 + k) (-(Sqrt[a^2] z - b/(2 Sqrt[a^2]))^2)^((1/2) (-1 - k)) Gamma[(1 + k)/2, -(Sqrt[a^2] z - b/(2 Sqrt[a^2]))^2], {k, 0, m}], {m, 0, n}]) /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], SuperscriptBox["b", RowBox[List[RowBox[List["-", "2"]], "n"]]]]], RowBox[List["2", " ", "b", " ", SqrtBox["\[Pi]"]]]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["b", " ", "z"]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["a", " ", SuperscriptBox["b", "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], "m"], RowBox[List["m", "!"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox["b", RowBox[List["2", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]]]]]], "-", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], RowBox[List[FractionBox[SuperscriptBox["b", "m"], RowBox[List["m", "!"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "-", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "-", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "-", FractionBox["b", RowBox[List["2", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> b </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> b </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Cosh", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["b", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["b", " ", "z"]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["a", " ", SuperscriptBox["b", "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "+", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], RowBox[List["m", "!"]]]]]]], "-", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox["b", "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["a", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "m"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]], ")"]], RowBox[List["m", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "-", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "-", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["a", "2"]], " ", "z"]], "-", FractionBox["b", RowBox[List["2", " ", SqrtBox[SuperscriptBox["a", "2"]]]]]]], ")"]], "2"]]]]], "]"]]]]]]]], RowBox[List["m", "!"]]]]]]]]], ")"]]]], RowBox[List["2", " ", "b", " ", SqrtBox["\[Pi]"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29