|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.28.26.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Erfi[z] == (-(Sqrt[-z^2]/(Sqrt[Pi] z))) MeijerG[{{1}, {}}, {{1/2}, {0}}, -z^2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Erfi", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " "]], RowBox[List[SqrtBox["\[Pi]"], "z"]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", "0", "}"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> erfi </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mn> 1 </mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 0 </mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["1", ",", "2"]], RowBox[List["1", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", SuperscriptBox["z", "2"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[TagBox["1", MeijerG, Rule[Editable, True]]], List[RowBox[List[TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <ci> erfi </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <cn type='integer'> 1 </cn> </list> <list /> </list> <list> <list> <cn type='rational'> 1 <sep /> 2 </cn> </list> <list> <cn type='integer'> 0 </cn> </list> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Erfi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", "0", "}"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", "z"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|