Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ExpIntegralE






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > ExpIntegralE[nu,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/06.34.20.0005.02









  


  










Input Form





D[ExpIntegralE[\[Nu], z], {\[Nu], n}] == Sum[z^(\[Nu] - 1) Binomial[n, k] Log[z]^k D[Gamma[1 - \[Nu]], {\[Nu], n - k}], {k, 0, n}] + n! Sum[((-1)^(n - k) z^k)/((\[Nu] - k - 1)^(n + 1) k!), {k, 0, Infinity}] /; !(Element[\[Nu], Integers] && \[Nu] > 0) && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "n"]], "}"]]], RowBox[List["ExpIntegralE", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[SuperscriptBox["z", RowBox[List["\[Nu]", "-", "1"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "k"], RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["n", "-", "k"]]]], "}"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]]]]]], " ", "+", RowBox[List[RowBox[List["n", "!"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], SuperscriptBox["z", "k"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "k", "-", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["k", "!"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Not", "[", RowBox[List[RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "\[And]", RowBox[List["\[Nu]", ">", "0"]]]], "]"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> k </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> ExpIntegralE </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <ci> k </ci> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </degree> </bvar> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <notin /> <ci> &#957; </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "n_"]], "}"]]]]], RowBox[List["ExpIntegralE", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[SuperscriptBox["z", RowBox[List["\[Nu]", "-", "1"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "k"], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["n", "-", "k"]]]], "}"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]]]]]], "+", RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], " ", SuperscriptBox["z", "k"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "k", "-", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["k", "!"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", ">", "0"]]]], ")"]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29