
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/06.34.20.0010.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
D[ExpIntegralE[\[Nu], z], {\[Nu], \[Alpha]}] ==
Integrate[(((-\[Nu]) Log[t])^\[Alpha] GammaRegularized[-\[Alpha], 0,
(-\[Nu]) Log[t]])/(E^(z t) t^\[Nu]), {t, 1, Infinity}]/
\[Nu]^\[Alpha] /; Re[z] > 0
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "\[Alpha]"]], "}"]]], RowBox[List["ExpIntegralE", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["\[Nu]", RowBox[List["-", "\[Alpha]"]]], RowBox[List[SubsuperscriptBox["\[Integral]", "1", "\[Infinity]"], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "z"]], " ", "t"]]], " ", SuperscriptBox["t", RowBox[List["-", "\[Nu]"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", "t", "]"]]]], ")"]], "\[Alpha]"], RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", "t", "]"]]]]]], "]"]], " ", RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox["E", ExpIntegralE] </annotation> </semantics> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> ν </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <msup> <mi> ν </mi> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ⁢ </mo> <mi> t </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> t </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> ν </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> ExpIntegralE </ci> <ci> ν </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> t </ci> </apply> </apply> <apply> <power /> <ci> t </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <ln /> <ci> t </ci> </apply> </apply> <ci> α </ci> </apply> <apply> <ci> GammaRegularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 0 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <ln /> <ci> t </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["ExpIntegralE", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[Nu]", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "1", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "z"]], " ", "t"]]], " ", SuperscriptBox["t", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", "t", "]"]]]], ")"]], "\[Alpha]"], " ", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", "t", "]"]]]]]], "]"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|