|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.35.10.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ExpIntegralEi[z] == I Pi Sign[Im[z]] -
E^z/(-z + ContinueFraction[{Floor[(k + 1)/2], (-z)^((1 + (-1)^k)/2)},
{k, 1, Infinity}]) /; Abs[Arg[-z]] < Pi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ExpIntegralEi", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Sign", "[", RowBox[List["Im", "[", "z", "]"]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "/", RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["k", "+", "1"]], "2"], "]"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]], "/", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]], ")"]]]]]]]], "/;", " ", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["-", "z"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <msubsup> <mrow> <msub> <mi> Κ </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> <mo> , </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mi> π </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ExpIntegralEi </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <ci> Sign </ci> <apply> <imaginary /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <apply> <ci> Subscript </ci> <ci> Κ </ci> <ci> k </ci> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <infinity /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <arg /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <pi /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ExpIntegralEi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Sign", "[", RowBox[List["Im", "[", "z", "]"]], "]"]]]], "-", FractionBox[SuperscriptBox["\[ExponentialE]", "z"], RowBox[List[RowBox[List["-", "z"]], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["k", "+", "1"]], "2"], "]"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["-", "z"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|