|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.35.13.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z^3 Derivative[3][w][z] - (-3 + r + 3 s) z^2 Derivative[2][w][z] -
(-1 + r + 3 s - 2 r s - 3 s^2 + a^2 r^2 z^(2 r)) z Derivative[1][w][z] -
s (r s + s^2 - a^2 r^2 z^(2 r)) w[z] == 0 /;
w[z] == Subscript[c, 1] z^s ExpIntegralEi[a z^r] +
Subscript[c, 2] z^s ExpIntegralEi[(-a) z^r] + Subscript[c, 3] z^s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "r", "+", RowBox[List["3", " ", "s"]]]], ")"]], SuperscriptBox["z", "2"], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["3", " ", "s"]], "-", RowBox[List["2", " ", "r", " ", "s"]], "-", RowBox[List["3", " ", SuperscriptBox["s", "2"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], ")"]], " ", "z", " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["r", " ", "s"]], "+", SuperscriptBox["s", "2"], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], " ", "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["z", "s"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], SuperscriptBox["z", "s"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mtext> </mtext> <mrow> <mrow> <mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> s </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> r </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> s </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> s </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> s </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> r </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> s </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> <apply> <power /> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> r </ci> <ci> s </ci> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "r_", "+", RowBox[List["3", " ", "s_"]]]], ")"]], " ", SuperscriptBox["z_", "2"], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r_", "+", RowBox[List["3", " ", "s_"]], "-", RowBox[List["2", " ", "r_", " ", "s_"]], "-", RowBox[List["3", " ", SuperscriptBox["s_", "2"]]], "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", "2"], " ", SuperscriptBox["z_", RowBox[List["2", " ", "r_"]]]]]]], ")"]], " ", "z_", " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["s_", " ", RowBox[List["(", RowBox[List[RowBox[List["r_", " ", "s_"]], "+", SuperscriptBox["s_", "2"], "-", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", "2"], " ", SuperscriptBox["z_", RowBox[List["2", " ", "r_"]]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", SuperscriptBox["z", "s"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|