|  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/06.01.09.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | n! == Limit[Integrate[(1 - t/m)^m t^n, {t, 0, m}], m -> Infinity] /; 
 Re[n] > -1 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["n", "!"]], "\[Equal]", RowBox[List["Limit", "[", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "m"], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["t", "m"]]], ")"]], "m"], " ", SuperscriptBox["t", "n"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], ",", RowBox[List["m", "\[Rule]", "\[Infinity]"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["Re", "[", "n", "]"]], ">", RowBox[List["-", "1"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <munder>  <mi> lim </mi>  <mrow>  <mi> m </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  </munder>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mn> 0 </mn>  <mi> m </mi>  </msubsup>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mi> t </mi>  <mi> m </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> t </mi>  <mi> n </mi>  </msup>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> n </mi>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <limit />  <bvar>  <ci> m </ci>  </bvar>  <condition>  <apply>  <tendsto />  <ci> m </ci>  <infinity />  </apply>  </condition>  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> m </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> t </ci>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> t </ci>  <ci> n </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <gt />  <apply>  <real />  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["n_", "!"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "m"], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["t", "m"]]], ")"]], "m"], " ", SuperscriptBox["t", "n"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], ",", RowBox[List["m", "\[Rule]", "\[Infinity]"]]]], "]"]], "/;", RowBox[List[RowBox[List["Re", "[", "n", "]"]], ">", RowBox[List["-", "1"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  |