|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.01.20.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[n!, {z, m}] == Gamma[n + 1] R[m, n + 1] /;
R[m, z] == PolyGamma[z] R[m - 1, z] + Derivative[0, 1][R][m - 1, z] &&
R[0, z] == 1 && (Element[m, Integers] && m > 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "m"]], "}"]]], RowBox[List["n", "!"]]]], "\[Equal]", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]], " ", RowBox[List["R", "[", RowBox[List["m", ",", RowBox[List["n", "+", "1"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["R", "[", RowBox[List["m", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", "z", "]"]], " ", RowBox[List["R", "[", RowBox[List[RowBox[List["m", "-", "1"]], ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["R", TagBox[RowBox[List["(", RowBox[List["0", ",", "1"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["m", "-", "1"]], ",", "z"]], "]"]]]]]], "&&", RowBox[List[RowBox[List["R", "[", RowBox[List["0", ",", "z"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> m </mi> </msup> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> R </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> R </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> R </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> R </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["0", ",", "1"]], ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> R </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <factorial /> <ci> n </ci> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> R </ci> <ci> m </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> R </ci> <ci> m </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> PolyGamma </ci> <ci> z </ci> </apply> <apply> <ci> R </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 1 </cn> </list> <ci> R </ci> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> R </ci> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "m_"]], "}"]]]]], RowBox[List["n_", "!"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]], " ", RowBox[List["R", "[", RowBox[List["m", ",", RowBox[List["n", "+", "1"]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["R", "[", RowBox[List["m", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", "z", "]"]], " ", RowBox[List["R", "[", RowBox[List[RowBox[List["m", "-", "1"]], ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["R", TagBox[RowBox[List["(", RowBox[List["0", ",", "1"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["m", "-", "1"]], ",", "z"]], "]"]]]]]], "&&", RowBox[List[RowBox[List["R", "[", RowBox[List["0", ",", "z"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|