|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.01.23.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[k!^2/((k + 4)! (k + 8)!), {k, 0, Infinity}] ==
-(435179/66679200) + Pi^2/1512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "4"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "8"]], ")"]], "!"]]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["435179", "66679200"]]], "+", FractionBox[SuperscriptBox["\[Pi]", "2"], "1512"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 435179 </mn> <mn> 66679200 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mn> 1512 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 435179 <sep /> 66679200 </cn> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 1512 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["k_", "!"]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k_", "+", "4"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k_", "+", "8"]], ")"]], "!"]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["435179", "66679200"]]], "+", FractionBox[SuperscriptBox["\[Pi]", "2"], "1512"]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|