|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.01.23.0014.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[k!^3/(k + 7)!^3, {k, 0, Infinity}] == (7 (389467 - 324000 Zeta[3]))/
503884800000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "3"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "7"]], ")"]], "!"]], ")"]], "3"]]]], "\[Equal]", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List["389467", "-", RowBox[List["324000", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "503884800000"]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 389467 </mn> <mo> - </mo> <mrow> <mn> 324000 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 503884800000 </mn> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 7 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <cn type='integer'> 389467 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 324000 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 503884800000 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["k_", "!"]], ")"]], "3"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["k_", "+", "7"]], ")"]], "!"]], ")"]], "3"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List["389467", "-", RowBox[List["324000", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "503884800000"]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|