Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Factorial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Factorial[n] > Summation > Infinite summation > Parameter-containing sums





http://functions.wolfram.com/06.01.23.0050.01









  


  










Input Form





Sum[(2 k)!^2/(2 k + 2 n + 1)!^2, {k, 0, Infinity}] == (1/2) Sum[-((3 (4 n)! (2 n - j - 1)!^2)/((2 n)!^4 (4 n - 2 j)!)), {j, 0, 2 n - 1}] + ((4 n)! Pi^2)/(12 (2 n)!^4) + (1/2) (Sum[((-1)^j (3 - 10 n + 10 j) (n - j - 1)!^2)/ (4 (1 - 2 n + 2 j) (2 n)! (2 n - 2 j)! n^2 (n - 1)!^2), {j, 0, n - 2}] - ((2/(-1)^n) (7/16 - Pi^2/24))/(n!^2 (2 n)!)) /; Element[n, Integers] && n >= 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], "!"]], ")"]], "2"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], RowBox[List["-", FractionBox[RowBox[List["3", " ", RowBox[List[RowBox[List["(", RowBox[List["4", " ", "n"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", "j", "-", "1"]], ")"]], "!"]], ")"]], "2"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], ")"]], "4"], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "n"]], "-", RowBox[List["2", " ", "j"]]]], ")"]], "!"]]]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4", " ", "n"]], ")"]], "!"]], " ", SuperscriptBox["\[Pi]", "2"]]], RowBox[List["12", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], ")"]], "4"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "2"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["10", " ", "n"]], "+", RowBox[List["10", " ", "j"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j", "-", "1"]], ")"]], "!"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "j"]]]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "j"]]]], ")"]], "!"]], " ", SuperscriptBox["n", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], ")"]], "2"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["-", "n"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["7", "16"], "-", FractionBox[SuperscriptBox["\[Pi]", "2"], "24"]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["n", "!"]], ")"]], "2"], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 16 </mn> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 24 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <factorial /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 7 <sep /> 16 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 24 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k_"]], ")"]], "!"]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k_"]], "+", RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], "!"]], ")"]], "2"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], RowBox[List["-", FractionBox[RowBox[List["3", " ", RowBox[List[RowBox[List["(", RowBox[List["4", " ", "n"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", "j", "-", "1"]], ")"]], "!"]], ")"]], "2"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], ")"]], "4"], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "n"]], "-", RowBox[List["2", " ", "j"]]]], ")"]], "!"]]]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4", " ", "n"]], ")"]], "!"]], " ", SuperscriptBox["\[Pi]", "2"]]], RowBox[List["12", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], ")"]], "4"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "2"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["10", " ", "n"]], "+", RowBox[List["10", " ", "j"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j", "-", "1"]], ")"]], "!"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "j"]]]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "j"]]]], ")"]], "!"]], " ", SuperscriptBox["n", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], ")"]], "2"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["-", "n"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["7", "16"], "-", FractionBox[SuperscriptBox["\[Pi]", "2"], "24"]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["n", "!"]], ")"]], "2"], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "1"]]]]]]]]]]










Contributed by





Troy Kessler










Date Added to functions.wolfram.com (modification date)





2007-05-02