| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/06.33.19.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Im[FresnelC[x + I y]] == 
 Sum[((-1)^(j + k) 2^(2 k) Pi^(-(1/2) + 2 k) x^(-2 j + 4 k) y^(1 + 2 j) 
    Gamma[1/2 + 2 k])/((2 j + 1)! (4 k - 2 j)!), {k, 0, Infinity}, 
  {j, 0, 2 k}] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Im", "[", RowBox[List["FresnelC", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", "  ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["2", "k"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List["2", " ", "k"]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["x", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", RowBox[List["4", " ", "k"]]]]], " ", SuperscriptBox["y", RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "j"]], "+", "1"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "-", RowBox[List["2", "j"]]]], ")"]], "!"]]]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mi> Im </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> x </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> y </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </munderover>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> x </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> y </mi>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <imaginary />  <apply>  <ci> FresnelC </ci>  <apply>  <plus />  <ci> x </ci>  <apply>  <times />  <imaginaryi />  <ci> y </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <pi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> x </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> y </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <factorial />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Im", "[", RowBox[List["FresnelC", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["2", " ", "k"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List["2", " ", "k"]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["x", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", RowBox[List["4", " ", "k"]]]]], " ", SuperscriptBox["y", RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "-", RowBox[List["2", " ", "j"]]]], ")"]], "!"]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |