Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











FresnelC






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > FresnelC[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving power function > Involving power > Power arguments





http://functions.wolfram.com/06.33.21.0010.01









  


  










Input Form





Integrate[z^(\[Alpha] - 1) FresnelC[a z^r], z] == ((1/(4 \[Alpha])) z^\[Alpha] (4 Pi^((r + \[Alpha])/(2 r)) (a^4 z^(4 r))^((r + \[Alpha])/(2 r)) FresnelC[a z^r] + 2^((r + \[Alpha])/(2 r)) a z^r ((I a^2 z^(2 r))^((r + \[Alpha])/(2 r)) Gamma[(r + \[Alpha])/(2 r), (-(1/2)) I a^2 Pi z^(2 r)] + ((-I) a^2 z^(2 r))^((r + \[Alpha])/(2 r)) Gamma[(r + \[Alpha])/(2 r), (1/2) I a^2 Pi z^(2 r)])))/(Pi^((r + \[Alpha])/(2 r)) (a^4 z^(4 r))^((r + \[Alpha])/(2 r)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["FresnelC", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", "\[Alpha]"]]], SuperscriptBox["\[Pi]", RowBox[List["-", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]], ")"]], RowBox[List["-", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]], ")"]], FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", "a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], ")"]], FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], ")"]], FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]], ",", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["FresnelC", "[", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["-", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]], ")"]], RowBox[List["-", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]], ")"]], FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", "a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], ")"]], FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], ")"]], FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["2", " ", "r"]]], ",", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", "\[Alpha]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29