|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.33.21.0030.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^n Sin[b z] FresnelC[a z], z] == ((I^n b^(-n - 1))/2)
((-FresnelC[a z]) (Gamma[1 + n, (-I) b z] + (-1)^n Gamma[1 + n, I b z]) +
I a n! (Sum[(((2^(-1 + m) a^(-2 - 2 m) b^m Pi^(-1 - m))/m!)
((-E^((I b^2)/(a^2 Pi))) Sum[(2^((1/2) (-1 + k - 2 m))
((-I) b)^(-k + m) Pi^((1 + k)/2) (I (b - a^2 Pi z))^(1 + k)
Binomial[m, k] Gamma[(1 + k)/2, (I (b - a^2 Pi z)^2)/
(2 a^2 Pi)])/((I (b - a^2 Pi z)^2)/a^2)^((k + 1)/2),
{k, 0, m}] + (-1)^m Sum[(2^((1/2) (-1 + k - 2 m))
((-I) b)^(-k + m) Pi^((1 + k)/2) (I (b + a^2 Pi z))^(1 + k)
Binomial[m, k] Gamma[(1 + k)/2, -((I (b + a^2 Pi z)^2)/
(2 a^2 Pi))])/(-((I (b + a^2 Pi z)^2)/a^2))^((k + 1)/2),
{k, 0, m}]))/E^((I b^2)/(2 a^2 Pi)), {m, 0, n}] +
(-1)^n Sum[(((2^(-1 + m) a^(-2 - 2 m) b^m Pi^(-1 - m))/m!)
(Sum[(2^((1/2) (-1 + k - 2 m)) (I b)^(-k + m) Pi^((1 + k)/2)
(I (-b + a^2 Pi z))^(1 + k) Binomial[m, k] Gamma[(1 + k)/2,
-((I (b - a^2 Pi z)^2)/(2 a^2 Pi))])/(-((I (b - a^2 Pi z)^2)/
a^2))^((k + 1)/2), {k, 0, m}] - (-1)^m E^((I b^2)/(a^2 Pi))
Sum[(2^((1/2) (-1 + k - 2 m)) (I b)^(-k + m) Pi^((1 + k)/2)
((-I) (b + a^2 Pi z))^(1 + k) Binomial[m, k] Gamma[(1 + k)/2,
(I (b + a^2 Pi z)^2)/(2 a^2 Pi)])/((I (b + a^2 Pi z)^2)/a^2)^(
(k + 1)/2), {k, 0, m}]))/E^((I b^2)/(2 a^2 Pi)),
{m, 0, n}])) /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], SuperscriptBox["b", RowBox[List[RowBox[List["-", "n"]], "-", "1"]]], " "]], "2"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]]]], " ", RowBox[List["(", " ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sum", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "m"]]]]], " ", SuperscriptBox["b", "m"], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]]]]]], RowBox[List["m", "!"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], " ", RowBox[List["Sum", "[", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]], ")"]], RowBox[List["-", FractionBox[RowBox[List["k", "+", "1"]], "2"]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]], "]"]]]], ",", RowBox[List["{", RowBox[List["k", ",", "0", ",", "m"]], "}"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["Sum", "[", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]]]], ")"]], RowBox[List["-", FractionBox[RowBox[List["k", "+", "1"]], "2"]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]]], "]"]]]], ",", RowBox[List["{", RowBox[List["k", ",", "0", ",", "m"]], "}"]]]], "]"]]]]]], ")"]]]], ",", RowBox[List["{", RowBox[List["m", ",", "0", ",", "n"]], "}"]]]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Sum", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "m"]]]]], " ", SuperscriptBox["b", "m"], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]]]], RowBox[List["m", "!"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sum", "[", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]]]], ")"]], RowBox[List["-", FractionBox[RowBox[List["k", "+", "1"]], "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]]], "]"]]]], ",", RowBox[List["{", RowBox[List["k", ",", "0", ",", "m"]], "}"]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]], " ", RowBox[List["Sum", "[", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]], ")"]], RowBox[List["-", FractionBox[RowBox[List["k", "+", "1"]], "2"]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]], "]"]]]], ",", RowBox[List["{", RowBox[List["k", ",", "0", ",", "m"]], "}"]]]], "]"]]]]]], ")"]]]], ",", RowBox[List["{", RowBox[List["m", ",", "0", ",", "n"]], "}"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅈ </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> n </ci> </apply> <apply> <power /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <ci> m </ci> </apply> <apply> <power /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <ci> m </ci> </apply> <apply> <power /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Sin", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], " ", SuperscriptBox["b", RowBox[List[RowBox[List["-", "n"]], "-", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "m"]]]]], " ", SuperscriptBox["b", "m"], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]]], "]"]]]]]]]]]], ")"]]]], RowBox[List["m", "!"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "m"]]]]], " ", SuperscriptBox["b", "m"], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]]], "]"]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "-", RowBox[List["2", " ", "m"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", "m"]]], " ", SuperscriptBox["\[Pi]", FractionBox[RowBox[List["1", "+", "k"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], SuperscriptBox["a", "2"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "k"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", "z"]]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]], "]"]]]]]]]]]], ")"]]]], RowBox[List["m", "!"]]]]]]]]], ")"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|