Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











FresnelC






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > FresnelC[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving logarithm and a power function > Involving log and power > Linear arguments





http://functions.wolfram.com/06.33.21.0105.01









  


  










Input Form





Integrate[z Log[b z] FresnelC[a z], z] == (1/(144 a^5 Pi z^3)) (9 (I Sqrt[2] Sqrt[a^4 z^4] (Sqrt[(-I) a^2 z^2] - Sqrt[I a^2 z^2]) + 4 a^4 z^4 Sin[(1/2) a^2 Pi z^2]) + 4 a^6 Pi z^6 HypergeometricPFQ[{3/2, 3/2}, {5/2, 5/2}, (-(1/2)) I a^2 Pi z^2] + 4 a^6 Pi z^6 HypergeometricPFQ[{3/2, 3/2}, {5/2, 5/2}, (1/2) I a^2 Pi z^2] + 18 I Sqrt[2] Sqrt[a^4 z^4] (Sqrt[(-I) a^2 z^2] - Sqrt[I a^2 z^2]) Log[z] - 18 I Log[b z] (Sqrt[2] Sqrt[a^4 z^4] (Sqrt[(-I) a^2 z^2] - Sqrt[I a^2 z^2]) - 4 I a^4 z^4 Sin[(1/2) a^2 Pi z^2]) + 36 a^5 Pi z^5 FresnelC[a z] (-1 + 2 Log[b z]) + 36 a^3 z^3 FresnelS[a z] (-1 + 2 Log[b z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["144", " ", SuperscriptBox["a", "5"], " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"]]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], "-", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "6"], " ", "\[Pi]", " ", SuperscriptBox["z", "6"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["5", "2"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "6"], " ", "\[Pi]", " ", SuperscriptBox["z", "6"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["5", "2"]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "+", RowBox[List["18", " ", "\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"]]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], "-", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List["18", " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"]]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], "-", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], "+", RowBox[List["36", " ", SuperscriptBox["a", "5"], " ", "\[Pi]", " ", SuperscriptBox["z", "5"], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["36", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["z", "3"], " ", RowBox[List["FresnelS", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 144 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot; &quot;, &quot;\[Pi]&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot; &quot;, &quot;\[Pi]&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> <pi /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </list> <list> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> <pi /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </list> <list> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> <pi /> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 18 </cn> <imaginaryi /> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", RowBox[List["Log", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"]]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], "-", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "6"], " ", "\[Pi]", " ", SuperscriptBox["z", "6"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["5", "2"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "6"], " ", "\[Pi]", " ", SuperscriptBox["z", "6"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["5", "2"]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "+", RowBox[List["18", " ", "\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"]]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], "-", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List["18", " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"]]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]], "-", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], "+", RowBox[List["36", " ", SuperscriptBox["a", "5"], " ", "\[Pi]", " ", SuperscriptBox["z", "5"], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["36", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["z", "3"], " ", RowBox[List["FresnelS", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], RowBox[List["144", " ", SuperscriptBox["a", "5"], " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29