Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Gamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Gamma[a,z] > Series representations > Generalized power series > Expansions at generic point a==a0 > For the function itself





http://functions.wolfram.com/06.06.06.0017.01









  


  










Input Form





Gamma[a, z] \[Proportional] Gamma[Subscript[a, 0], z] + (Gamma[Subscript[a, 0]] (-Log[z] + PolyGamma[Subscript[a, 0]]) + (z^Subscript[a, 0]/Subscript[a, 0]^2) HypergeometricPFQ[ {Subscript[a, 0], Subscript[a, 0]}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, -z] + Log[z] Gamma[Subscript[a, 0], z]) (a - Subscript[a, 0]) - (1/2) ((-Gamma[Subscript[a, 0], z]) Log[z]^2 + Gamma[Subscript[a, 0]] (Log[z]^2 - PolyGamma[Subscript[a, 0]]^2 - PolyGamma[1, Subscript[a, 0]]) + ((2 z^Subscript[a, 0])/Subscript[a, 0]^3) (HypergeometricPFQ[{Subscript[a, 0], Subscript[a, 0], Subscript[a, 0]}, {1 + Subscript[a, 0], 1 + Subscript[a, 0], 1 + Subscript[a, 0]}, -z] - Subscript[a, 0] Log[z] HypergeometricPFQ[{Subscript[a, 0], Subscript[a, 0]}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, -z])) (a - Subscript[a, 0])^2 + \[Ellipsis] /; (a -> Subscript[a, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "0"], ",", "z"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["z", SubscriptBox["a", "0"]], SubsuperscriptBox["a", "0", "2"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", " ", RowBox[List[RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "0"], ",", "z"]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]]]], " ", "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "0"], ",", "z"]], "]"]]]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"]]], "+", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["a", "0"]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["z", SubscriptBox["a", "0"]], " "]], SubsuperscriptBox["a", "0", "3"]], RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "-", " ", RowBox[List[SubscriptBox["a", "0"], RowBox[List["Log", "[", "z", "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]], "2"]]], " ", "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["a", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> z </mi> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </msup> <msubsup> <mi> a </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;0&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;0&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </msup> </mrow> <msubsup> <mi> a </mi> <mn> 0 </mn> <mn> 3 </mn> </msubsup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;0&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;0&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;0&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;0&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;0&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <ci> z </ci> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ln /> <ci> z </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Gamma", "[", RowBox[List["a_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "z"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", SubscriptBox["aa", "0"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], SubsuperscriptBox["aa", "0", "2"]], "+", RowBox[List[RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "z"]], "]"]]]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"]]], "+", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["aa", "0"]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["z", SubscriptBox["aa", "0"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "-", RowBox[List[SubscriptBox["aa", "0"], " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]], SubsuperscriptBox["aa", "0", "3"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["aa", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02