Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Gamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Gamma[a,z] > Differentiation > Fractional integro-differentiation > With respect to z





http://functions.wolfram.com/06.06.20.0009.01









  


  










Input Form





D[Gamma[a, z], {z, \[Alpha]}] == Gamma[a]/(z^\[Alpha] Gamma[1 - \[Alpha]]) - z^(a - \[Alpha]) Gamma[a] Hypergeometric1F1Regularized[a, 1 + a - \[Alpha], -z] /; !(Element[-a, Integers] && -a > 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["Gamma", "[", RowBox[List["a", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List["a", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ; </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;a&quot;, Hypergeometric1F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;a&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric1F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], Hypergeometric1F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1Regularized] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8713; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Hypergeometric1F1Regularized </ci> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["Gamma", "[", RowBox[List["a_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List["a", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29