| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/06.07.20.0007.02 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | D[Gamma[a, Subscript[z, 1], Subscript[z, 2]], {a, n}] == 
  Sum[((-1)^(n - k - 1)/((a + k)^(n + 1) k!)) 
    Gamma[n + 1, (-(a + k)) Log[Subscript[z, 1]], 
     (-(a + k)) Log[Subscript[z, 2]]], {k, 0, Infinity}] /; 
 Element[n, Integers] && n >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "n"]], "}"]]], RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k", "-", "1"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["k", "!"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]]]], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]]]], " ", RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mo> ∂ </mo>  <mi> n </mi>  </msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> , </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> z </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mo> ∂ </mo>  <msup>  <mi> a </mi>  <mi> n </mi>  </msup>  </mrow>  </mfrac>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> z </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <partialdiff />  <bvar>  <ci> a </ci>  <degree>  <ci> n </ci>  </degree>  </bvar>  <apply>  <ci> Gamma </ci>  <ci> a </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <factorial />  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <ln />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <ln />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "n_"]], "}"]]]]], RowBox[List["Gamma", "[", RowBox[List["a_", ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k", "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]]]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]]]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["k", "!"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |