|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.09.06.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GammaRegularized[-n + \[Epsilon], Subscript[z, 1],
Subscript[z, 2]] \[Proportional]
(-1)^n n! Gamma[-n, Subscript[z, 1], Subscript[z, 2]] \[Epsilon] +
(-1)^n n! (Gamma[-n, Subscript[z, 1]] Log[Subscript[z, 1]] -
Gamma[-n, Subscript[z, 2]] Log[Subscript[z, 2]] +
MeijerG[{{}, {1, 1}}, {{0, 0, -n}, {}}, Subscript[z, 1]] -
MeijerG[{{}, {1, 1}}, {{0, 0, -n}, {}}, Subscript[z, 2]] -
Gamma[-n, Subscript[z, 1], Subscript[z, 2]] PolyGamma[1 + n])
\[Epsilon]^2 + (((-1)^n n!)/6) (3 Gamma[-n, Subscript[z, 1]]
Log[Subscript[z, 1]]^2 - 3 Gamma[-n, Subscript[z, 2]]
Log[Subscript[z, 2]]^2 + 6 (EulerGamma - HarmonicNumber[n] +
Log[Subscript[z, 1]]) MeijerG[{{}, {1, 1}}, {{0, 0, -n}, {}},
Subscript[z, 1]] - 6 (EulerGamma - HarmonicNumber[n] +
Log[Subscript[z, 2]]) MeijerG[{{}, {1, 1}}, {{0, 0, -n}, {}},
Subscript[z, 2]] + 6 MeijerG[{{}, {1, 1, 1}}, {{0, 0, 0, -n}, {}},
Subscript[z, 1]] - 6 MeijerG[{{}, {1, 1, 1}}, {{0, 0, 0, -n}, {}},
Subscript[z, 2]] + (-6 Gamma[-n, Subscript[z, 1]]
Log[Subscript[z, 1]] + 6 Gamma[-n, Subscript[z, 2]]
Log[Subscript[z, 2]]) PolyGamma[1 + n] +
Gamma[-n, Subscript[z, 1], Subscript[z, 2]]
(-Pi^2 + 3 PolyGamma[1 + n]^2 + 3 PolyGamma[1, 1 + n])) \[Epsilon]^3 +
O[\[Epsilon]^4] /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "+", "\[Epsilon]"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Epsilon]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]], "-", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]]]], ")"]], SuperscriptBox["\[Epsilon]", "2"]]], "+", " ", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]]]], "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "1"]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]], "2"]]], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["z", "1"]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "2"], "]"]]]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]]]], ")"]], SuperscriptBox["\[Epsilon]", "3"]]], "+", RowBox[List["O", "[", SuperscriptBox["\[Epsilon]", "4"], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> ϵ </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ϵ </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SubscriptBox["z", "1"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SubscriptBox["z", "2"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> - </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ϵ </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SubscriptBox["z", "1"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SubscriptBox["z", "2"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "4"]], RowBox[List["4", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SubscriptBox["z", "1"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "4"]], RowBox[List["4", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SubscriptBox["z", "2"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ϵ </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> ϵ </mi> <mn> 4 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> GammaRegularized </ci> <apply> <plus /> <ci> ϵ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> ϵ </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> ϵ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> HarmonicNumber </ci> <ci> n </ci> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <eulergamma /> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> HarmonicNumber </ci> <ci> n </ci> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <eulergamma /> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> ϵ </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> ϵ </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "n_"]], "+", "\[Epsilon]_"]], ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]], " ", "\[Epsilon]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "2"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]], "-", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]]]], ")"]], " ", SuperscriptBox["\[Epsilon]", "2"]]], "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "1"]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]], "2"]]], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["zz", "1"]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SubscriptBox["zz", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "2"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "2"], "]"]]]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["\[Epsilon]", "3"]]], "+", SuperscriptBox[RowBox[List["O", "[", "\[Epsilon]", "]"]], "4"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|