Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > GammaRegularized[a,z1,z2] > Differentiation > Symbolic differentiation > With respect to a





http://functions.wolfram.com/06.09.20.0016.01









  


  










Input Form





Derivative[n, 0, 0][GammaRegularized][-m, Subscript[z, 1], Subscript[z, 2]] == (-1)^m n! Sum[Subscript[a, n - j - 1] Subscript[b, j - i, m] Subscript[c, i, m], {j, 0, n - 1}, {i, 0, j}] /; Subscript[a, 2 k] == ((-1)^k Pi^(2 k))/(2 k + 1)! && Subscript[a, 2 k + 1] == 0 && Subscript[b, k, m] == ((-1)^k/k!) Derivative[k][Gamma][1 + m] && Subscript[c, k, m] = (1/k!) Derivative[k, 0, 0][Gamma][-m, Subscript[z, 1], Subscript[z, 2]] && Element[k, Integers] && k >= 0 && Element[m, Integers] && m >= 0 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["GammaRegularized", TagBox[RowBox[List["(", RowBox[List["n", ",", "0", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "m"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], RowBox[List[SubscriptBox["a", RowBox[List["n", "-", "j", "-", "1"]]], " ", SubscriptBox["b", RowBox[List[RowBox[List["j", "-", "i"]], ",", "m"]]], SubscriptBox["c", RowBox[List["i", ",", "m"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", RowBox[List["2", "k"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["\[Pi]", RowBox[List["2", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], "!"]]]]], "\[And]", RowBox[List[SubscriptBox["a", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]], "\[Equal]", "0"]], "\[And]", RowBox[List[SubscriptBox["b", RowBox[List["k", ",", "m"]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["k", "!"]]], RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", "m"]], "]"]]]]]], "\[And]", SubscriptBox["c", RowBox[List["k", ",", "m"]]]]]]], "=", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", RowBox[List["k", ",", "0", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "m"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <semantics> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;,&quot;, &quot;0&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> b </mi> <mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> </mrow> <mo> , </mo> <mi> m </mi> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> c </mi> <mrow> <mi> i </mi> <mo> , </mo> <mi> m </mi> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> k </mi> <mo> , </mo> <mi> m </mi> </mrow> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> &#915; </mi> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;k&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> , </mo> <mi> m </mi> </mrow> </msub> </mrow> </mrow> <mo> = </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> &#915; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;k&quot;, &quot;,&quot;, &quot;0&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Set </ci> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <ci> n </ci> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> </list> <ci> GammaRegularized </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> i </ci> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <pi /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> D </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <list> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </list> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <and /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <partialdiff /> <list> <ci> k </ci> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> </list> <ci> Gamma </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["GammaRegularized", TagBox[RowBox[List["(", RowBox[List["n", ",", "0", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "m"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], RowBox[List[SubscriptBox["a", RowBox[List["n", "-", "j", "-", "1"]]], " ", SubscriptBox["b", RowBox[List[RowBox[List["j", "-", "i"]], ",", "m"]]], " ", SubscriptBox["c", RowBox[List["i", ",", "m"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", RowBox[List["2", " ", "k"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[Pi]", RowBox[List["2", " ", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]]]]], "&&", RowBox[List[SubscriptBox["a", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]], "\[Equal]", "0"]], "&&", RowBox[List[SubscriptBox["b", RowBox[List["k", ",", "m"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", "m"]], "]"]]]], RowBox[List["k", "!"]]]]], "&&", SubscriptBox["c", RowBox[List["k", ",", "m"]]]]]]], "=", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", RowBox[List["k", ",", "0", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "m"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], RowBox[List["k", "!"]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02