  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/06.23.06.0005.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    InverseBetaRegularized[z, a, b] \[Proportional] 
  InverseBetaRegularized[z, Subscript[a, 0], b] - 
   (1 - w)^(1 - b) w ((-(1/Subscript[a, 0]^2)) HypergeometricPFQ[
       {Subscript[a, 0], Subscript[a, 0], 1 - b}, {1 + Subscript[a, 0], 
        1 + Subscript[a, 0]}, w] + (Beta[w, Subscript[a, 0], b] 
       (Log[w] - PolyGamma[Subscript[a, 0]] + PolyGamma[
         Subscript[a, 0] + b]))/w^Subscript[a, 0]) (a - Subscript[a, 0]) + 
   (1/2) (1 - w)^(1 - 2 b) w (-2 (1 - w)^b Gamma[Subscript[a, 0]]^3 
      HypergeometricPFQRegularized[{Subscript[a, 0], Subscript[a, 0], 
        Subscript[a, 0], 1 - b}, {1 + Subscript[a, 0], 1 + Subscript[a, 0], 
        1 + Subscript[a, 0]}, w] - ((1 - w)^b Beta[Subscript[a, 0], b] 
       BetaRegularized[w, Subscript[a, 0], b] (PolyGamma[Subscript[a, 0]] - 
        PolyGamma[Subscript[a, 0] + b]) (Log[w] - 
        PolyGamma[Subscript[a, 0]] + PolyGamma[Subscript[a, 0] + b]))/
      w^Subscript[a, 0] + (-1 + b) w^(1 - Subscript[a, 0]) 
      Gamma[Subscript[a, 0]]^2 HypergeometricPFQRegularized[
       {Subscript[a, 0], Subscript[a, 0], 1 - b}, {1 + Subscript[a, 0], 
        1 + Subscript[a, 0]}, w] (w^Subscript[a, 0] Gamma[Subscript[a, 0]]^2 
        HypergeometricPFQRegularized[{Subscript[a, 0], Subscript[a, 0], 
          1 - b}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, w] - 
       Beta[Subscript[a, 0], b] BetaRegularized[w, Subscript[a, 0], b] 
        (Log[w] - PolyGamma[Subscript[a, 0]] + PolyGamma[Subscript[a, 0] + 
           b])) + ((-1 + w) Gamma[Subscript[a, 0]]^2 
       (-HypergeometricPFQRegularized[{Subscript[a, 0], Subscript[a, 0], 
           1 - b}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, w] + 
        Subscript[a, 0]^2 (-1 + b) w HypergeometricPFQRegularized[
          {1 + Subscript[a, 0], 1 + Subscript[a, 0], 2 - b}, 
          {2 + Subscript[a, 0], 2 + Subscript[a, 0]}, w]) 
       (w^Subscript[a, 0] Gamma[Subscript[a, 0]]^2 
         HypergeometricPFQRegularized[{Subscript[a, 0], Subscript[a, 0], 
           1 - b}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, w] - 
        Beta[Subscript[a, 0], b] BetaRegularized[w, Subscript[a, 0], b] 
         (Log[w] - PolyGamma[Subscript[a, 0]] + PolyGamma[Subscript[a, 0] + 
            b])))/w^Subscript[a, 0] + (1 - b) w^(1 - 2 Subscript[a, 0]) 
      Beta[Subscript[a, 0], b] BetaRegularized[w, Subscript[a, 0], b] 
      (Log[w] - PolyGamma[Subscript[a, 0]] + PolyGamma[Subscript[a, 0] + b]) 
      (w^Subscript[a, 0] Gamma[Subscript[a, 0]]^2 
        HypergeometricPFQRegularized[{Subscript[a, 0], Subscript[a, 0], 
          1 - b}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, w] - 
       Beta[Subscript[a, 0], b] BetaRegularized[w, Subscript[a, 0], b] 
        (Log[w] - PolyGamma[Subscript[a, 0]] + PolyGamma[Subscript[a, 0] + 
           b])) - ((1 - w)^b Beta[Subscript[a, 0], b] 
       BetaRegularized[w, Subscript[a, 0], b] 
       (Log[w] - PolyGamma[Subscript[a, 0]] + PolyGamma[Subscript[a, 0] + b]) 
       (-Log[w] + ((1 - Subscript[a, 0]) (1 - w)^(1 - b) 
          (w^Subscript[a, 0] Gamma[Subscript[a, 0]]^2 
            HypergeometricPFQRegularized[{Subscript[a, 0], Subscript[a, 0], 
              1 - b}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, w] - 
           Beta[Subscript[a, 0], b] BetaRegularized[w, Subscript[a, 0], b] 
            (Log[w] - PolyGamma[Subscript[a, 0]] + PolyGamma[Subscript[a, 
                0] + b])))/w^Subscript[a, 0]))/w^Subscript[a, 0] + 
     (Beta[Subscript[a, 0], b] BetaRegularized[w, Subscript[a, 0], b] 
       ((-1 + w) w^Subscript[a, 0] Gamma[Subscript[a, 0]]^2 
         HypergeometricPFQRegularized[{Subscript[a, 0], Subscript[a, 0], 
           1 - b}, {1 + Subscript[a, 0], 1 + Subscript[a, 0]}, w] - 
        (-1 + w) Beta[Subscript[a, 0], b] BetaRegularized[w, Subscript[a, 0], 
          b] (Log[w] - PolyGamma[Subscript[a, 0]] + 
          PolyGamma[Subscript[a, 0] + b]) + (1 - w)^b w^Subscript[a, 0] 
         (PolyGamma[1, Subscript[a, 0]] - PolyGamma[1, Subscript[a, 0] + 
            b])))/w^(2 Subscript[a, 0])) (a - Subscript[a, 0])^2 + 
   \[Ellipsis] /; (a -> Subscript[a, 0]) && 
  w == InverseBetaRegularized[z, Subscript[a, 0], b] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], "-", " ", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", "b"]]], " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", SubsuperscriptBox["a", "0", "2"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "+", RowBox[List[SuperscriptBox["w", RowBox[List["-", SubscriptBox["a", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]], RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]]], " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "3"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["a", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]]]], "+", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "b"]], ")"]], " ", SuperscriptBox["w", RowBox[List["1", "-", SubscriptBox["a", "0"]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["a", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]], ")"]], "+", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["a", "0"]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "+", RowBox[List[SuperscriptBox[SubscriptBox["a", "0"], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "b"]], ")"]], " ", "w", " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["2", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["2", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["a", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]], ")"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["2", " ", SubscriptBox["a", "0"]]]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["a", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["a", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["a", "0"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", "b"]]], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["a", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["a", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["a", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", SuperscriptBox["w", SubscriptBox["a", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "0"], ",", SubscriptBox["a", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["a", "0"], "+", "b"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox["w", SubscriptBox["a", "0"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["a", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[SubscriptBox["a", "0"], "+", "b"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["a", "0"]]], ")"]], "\[And]", RowBox[List["w", "\[Equal]", RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", SubscriptBox["a", "0"], ",", "b"]], "]"]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mrow>  <msubsup>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mtext>   </mtext>  <mrow>  <mi> w </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msubsup>  <mi> a </mi>  <mn> 0 </mn>  <mn> 2 </mn>  </msubsup>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mi> w </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> b </mi>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> w </mi>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> b </mi>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> w </mi>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> w </mi>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> b </mi>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> w </mi>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> w </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> w </mi>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msubsup>  <mi> a </mi>  <mn> 0 </mn>  <mn> 2 </mn>  </msubsup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> w </mi>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> w </mi>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> w </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mrow>  <mo> ( </mo>  <mn> 1 </mn>  <mo> ) </mo>  </mrow>  </msup>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mrow>  <mo> ( </mo>  <mn> 1 </mn>  <mo> ) </mo>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> b </mi>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> w </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> w </mi>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mi> w </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["w", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> w </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> Β </mi>  <annotation-xml encoding='MathML-Content'>  <ci> Beta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> w </mi>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> w </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mo> … </mo>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> w </mi>  <mo> ⩵ </mo>  <mrow>  <msubsup>  <semantics>  <mi> I </mi>  <annotation-xml encoding='MathML-Content'>  <ci> BetaRegularized </ci>  </annotation-xml>  </semantics>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 0 </mn>  </msub>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> InverseBetaRegularized </ci>  <ci> z </ci>  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ci> InverseBetaRegularized </ci>  <ci> z </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> w </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Beta </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <ci> w </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  </apply>  <ci> b </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  </apply>  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> w </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <ci> w </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  </apply>  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> w </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> w </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> w </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> w </ci>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <ci> w </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> PolyGamma </ci>  <cn type='integer'> 1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  </apply>  <ci> b </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> w </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <ci> w </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> w </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <ci> Beta </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> BetaRegularized </ci>  <ci> w </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <ci> w </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  <apply>  <and />  <apply>  <ci> Rule </ci>  <ci> a </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <eq />  <ci> w </ci>  <apply>  <ci> InverseBetaRegularized </ci>  <ci> z </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  <ci> b </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseBetaRegularized", "[", RowBox[List["z_", ",", "a_", ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", "b"]]], " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]], SubsuperscriptBox["aa", "0", "2"]]]], "+", RowBox[List[SuperscriptBox["w", RowBox[List["-", SubscriptBox["aa", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]]], " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "3"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["aa", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "b"]], ")"]], " ", SuperscriptBox["w", RowBox[List["1", "-", SubscriptBox["aa", "0"]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["aa", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["aa", "0"]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "+", RowBox[List[SubsuperscriptBox["aa", "0", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "b"]], ")"]], " ", "w", " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["2", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["2", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["aa", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["2", " ", SubscriptBox["aa", "0"]]]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["aa", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["aa", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["aa", "0"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", "b"]]], " ", SuperscriptBox["w", RowBox[List["-", SubscriptBox["aa", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["w", SubscriptBox["aa", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["aa", "0"]]]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", SuperscriptBox["w", SubscriptBox["aa", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "0"], ",", SubscriptBox["aa", "0"], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "0"]]]]], "}"]], ",", "w"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["BetaRegularized", "[", RowBox[List["w", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "b"], " ", SuperscriptBox["w", SubscriptBox["aa", "0"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["aa", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[SubscriptBox["aa", "0"], "+", "b"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["aa", "0"]]], ")"]], "&&", RowBox[List["w", "\[Equal]", RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", SubscriptBox["aa", "0"], ",", "b"]], "]"]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |