
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/06.29.06.0004.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
InverseErf[z] \[Proportional] InverseErf[Subscript[z, 0]] +
(Sqrt[Pi]/2) E^InverseErf[Subscript[z, 0]]^2 (z - Subscript[z, 0]) +
(Pi/4) E^(2 InverseErf[Subscript[z, 0]]^2) InverseErf[Subscript[z, 0]]
(z - Subscript[z, 0])^2 + (Pi^(3/2)/24)
E^(3 InverseErf[Subscript[z, 0]]^2) (1 + 4 InverseErf[Subscript[z, 0]]^2)
(z - Subscript[z, 0])^3 + (Pi^2/96) E^(4 InverseErf[Subscript[z, 0]]^2)
InverseErf[Subscript[z, 0]] (7 + 12 InverseErf[Subscript[z, 0]]^2)
(z - Subscript[z, 0])^4 + (Pi^(5/2)/960)
E^(5 InverseErf[Subscript[z, 0]]^2) (7 + 8 InverseErf[Subscript[z, 0]]^2)
(1 + 12 InverseErf[Subscript[z, 0]]^2) (z - Subscript[z, 0])^5 +
(Pi^3/5760) E^(6 InverseErf[Subscript[z, 0]]^2)
InverseErf[Subscript[z, 0]] (127 + 652 InverseErf[Subscript[z, 0]]^2 +
480 InverseErf[Subscript[z, 0]]^4) (z - Subscript[z, 0])^6 +
(Pi^(7/2)/80640) E^(7 InverseErf[Subscript[z, 0]]^2)
(127 + 3480 InverseErf[Subscript[z, 0]]^2 +
10224 InverseErf[Subscript[z, 0]]^4 +
5760 InverseErf[Subscript[z, 0]]^6) (z - Subscript[z, 0])^7 +
(Pi^4/645120) E^(8 InverseErf[Subscript[z, 0]]^2)
InverseErf[Subscript[z, 0]] (4369 + 44808 InverseErf[Subscript[z, 0]]^2 +
88848 InverseErf[Subscript[z, 0]]^4 +
40320 InverseErf[Subscript[z, 0]]^6) (z - Subscript[z, 0])^8 +
(Pi^(9/2)/11612160) E^(9 InverseErf[Subscript[z, 0]]^2)
(4369 + 204328 InverseErf[Subscript[z, 0]]^2 +
1161168 InverseErf[Subscript[z, 0]]^4 +
1703808 InverseErf[Subscript[z, 0]]^6 +
645120 InverseErf[Subscript[z, 0]]^8) (z - Subscript[z, 0])^9 +
(Pi^5/116121600) E^(10 InverseErf[Subscript[z, 0]]^2)
InverseErf[Subscript[z, 0]] (243649 +
4161288 InverseErf[Subscript[z, 0]]^2 +
15561936 InverseErf[Subscript[z, 0]]^4 +
17914752 InverseErf[Subscript[z, 0]]^6 +
5806080 InverseErf[Subscript[z, 0]]^8) (z - Subscript[z, 0])^10 +
\[Ellipsis] /; (z -> Subscript[z, 0])
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseErf", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "+", RowBox[List[FractionBox[RowBox[List[" ", SqrtBox["\[Pi]"]]], "2"], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["\[Pi]", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], " ", "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " "]], "24"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " "]], "96"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "4"]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " "]], "960"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["5", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["8", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "5"]]], " ", "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "3"], " "]], "5760"], SuperscriptBox["\[ExponentialE]", RowBox[List["6", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], " ", RowBox[List["(", RowBox[List["127", "+", RowBox[List["652", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]], "+", RowBox[List["480", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "4"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "6"]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["7", "/", "2"]]], " "]], "80640"], SuperscriptBox["\[ExponentialE]", RowBox[List["7", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["127", "+", RowBox[List["3480", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]], "+", RowBox[List["10224", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "4"]]], "+", RowBox[List["5760", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "6"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "7"]]], " ", "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "4"], " "]], "645120"], SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], " ", RowBox[List["(", RowBox[List["4369", "+", RowBox[List["44808", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]], "+", RowBox[List["88848", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "4"]]], "+", RowBox[List["40320", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "6"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "8"]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["9", "/", "2"]]], " "]], "11612160"], SuperscriptBox["\[ExponentialE]", RowBox[List["9", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["4369", "+", RowBox[List["204328", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]], "+", RowBox[List["1161168", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "4"]]], "+", RowBox[List["1703808", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "6"]]], "+", RowBox[List["645120", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "8"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "9"]]], "+", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "5"], "116121600"], SuperscriptBox["\[ExponentialE]", RowBox[List["10", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], " ", RowBox[List["(", RowBox[List["243649", "+", RowBox[List["4161288", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "2"]]], "+", RowBox[List["15561936", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "4"]]], "+", RowBox[List["17914752", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "6"]]], "+", RowBox[List["5806080", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["z", "0"], "]"]], "8"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "10"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <msqrt> <mi> π </mi> </msqrt> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> ⅇ </mi> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mn> 24 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mi> ⅇ </mi> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> <mn> 96 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mn> 960 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mi> ⅇ </mi> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 3 </mn> </msup> <mn> 5760 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 480 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 652 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 127 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mn> 80640 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5760 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10224 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3480 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 127 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mtext> </mtext> </mrow> <mn> 645120 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 40320 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 88848 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 44808 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 4369 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mn> 11612160 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 645120 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1703808 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1161168 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 204328 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 4369 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 5 </mn> </msup> <mtext> </mtext> </mrow> <mn> 116121600 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5806080 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17914752 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15561936 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4161288 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 243649 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> InverseErf </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <exponentiale /> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 24 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 96 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 960 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 5760 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 480 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 652 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 127 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 80640 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5760 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10224 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3480 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 127 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 645120 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 40320 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 88848 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 44808 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 4369 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 11612160 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 645120 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1703808 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1161168 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 204328 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 4369 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <cn type='integer'> 116121600 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5806080 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17914752 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15561936 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4161288 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 243649 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 10 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseErf", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "+", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], "+", RowBox[List[FractionBox["1", "24"], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "3"]]], "+", RowBox[List[FractionBox["1", "96"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "4"]]], "+", RowBox[List[FractionBox["1", "960"], " ", SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["5", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["8", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "5"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["6", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["(", RowBox[List["127", "+", RowBox[List["652", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]], "+", RowBox[List["480", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "6"]]], "5760"], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["7", "/", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["7", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["127", "+", RowBox[List["3480", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]], "+", RowBox[List["10224", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "4"]]], "+", RowBox[List["5760", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "7"]]], "80640"], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["(", RowBox[List["4369", "+", RowBox[List["44808", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]], "+", RowBox[List["88848", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "4"]]], "+", RowBox[List["40320", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "8"]]], "645120"], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["9", "/", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["9", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List["4369", "+", RowBox[List["204328", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]], "+", RowBox[List["1161168", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "4"]]], "+", RowBox[List["1703808", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "6"]]], "+", RowBox[List["645120", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "9"]]], "11612160"], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["10", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], " ", RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["(", RowBox[List["243649", "+", RowBox[List["4161288", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "2"]]], "+", RowBox[List["15561936", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "4"]]], "+", RowBox[List["17914752", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "6"]]], "+", RowBox[List["5806080", " ", SuperscriptBox[RowBox[List["InverseErf", "[", SubscriptBox["zz", "0"], "]"]], "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "10"]]], "116121600"], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|