Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseGammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > InverseGammaRegularized[a,z] > Differentiation > Low-order differentiation > With respect to z





http://functions.wolfram.com/06.12.20.0009.01









  


  










Input Form





D[InverseGammaRegularized[a, z], {z, 7}] == (-E^(7 w)) w^(1 - 7 a) (1 + a (-21 + a (175 + a (-735 + 4 a (406 + 9 a (-49 + 20 a))))) + 120 w - 24 a (54 + a (-229 + 6 a (79 + a (-79 + 30 a)))) w + 6 (-1 + a) (-1 + 2 a) (269 + 36 a (-27 + 25 a)) w^2 - 8 (-1 + a) (755 + 18 a (-129 + 100 a)) w^3 + 36 (-1 + a) (-229 + 300 a) w^4 - 4320 (-1 + a) w^5 + 720 w^6) Gamma[a]^7 /; w == InverseGammaRegularized[a, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "7"]], "}"]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["7", " ", "w"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["7", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["175", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "735"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["406", "+", RowBox[List["9", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "49"]], "+", RowBox[List["20", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["120", " ", "w"]], "-", RowBox[List["24", " ", "a", " ", RowBox[List["(", RowBox[List["54", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "229"]], "+", RowBox[List["6", " ", "a", " ", RowBox[List["(", RowBox[List["79", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "79"]], "+", RowBox[List["30", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "w"]], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List["269", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "27"]], "+", RowBox[List["25", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["755", "+", RowBox[List["18", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "129"]], "+", RowBox[List["100", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "+", RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "229"]], "+", RowBox[List["300", " ", "a"]]]], ")"]], " ", SuperscriptBox["w", "4"]]], "-", RowBox[List["4320", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", SuperscriptBox["w", "5"]]], "+", RowBox[List["720", " ", SuperscriptBox["w", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "7"]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 7 </mn> </msup> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 720 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4320 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 300 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 229 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 100 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 129 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 755 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 27 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 269 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 79 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 79 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 229 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 54 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mrow> <mn> 120 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 49 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 406 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 735 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 175 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 7 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> w </mi> <mo> &#63449; </mo> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 7 </cn> </degree> </bvar> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> w </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 720 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4320 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 300 </cn> <ci> a </ci> </apply> <cn type='integer'> -229 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 18 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 100 </cn> <ci> a </ci> </apply> <cn type='integer'> -129 </cn> </apply> </apply> <cn type='integer'> 755 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 25 </cn> <ci> a </ci> </apply> <cn type='integer'> -27 </cn> </apply> </apply> <cn type='integer'> 269 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 30 </cn> <ci> a </ci> </apply> <cn type='integer'> -79 </cn> </apply> </apply> <cn type='integer'> 79 </cn> </apply> </apply> <cn type='integer'> -229 </cn> </apply> </apply> <cn type='integer'> 54 </cn> </apply> <ci> w </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 120 </cn> <ci> w </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <ci> a </ci> </apply> <cn type='integer'> -49 </cn> </apply> </apply> <cn type='integer'> 406 </cn> </apply> </apply> <cn type='integer'> -735 </cn> </apply> </apply> <cn type='integer'> 175 </cn> </apply> </apply> <cn type='integer'> -21 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> w </ci> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "7"]], "}"]]]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["7", " ", "w"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["7", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["175", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "735"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["406", "+", RowBox[List["9", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "49"]], "+", RowBox[List["20", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["120", " ", "w"]], "-", RowBox[List["24", " ", "a", " ", RowBox[List["(", RowBox[List["54", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "229"]], "+", RowBox[List["6", " ", "a", " ", RowBox[List["(", RowBox[List["79", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "79"]], "+", RowBox[List["30", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "w"]], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List["269", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "27"]], "+", RowBox[List["25", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["755", "+", RowBox[List["18", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "129"]], "+", RowBox[List["100", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "+", RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "229"]], "+", RowBox[List["300", " ", "a"]]]], ")"]], " ", SuperscriptBox["w", "4"]]], "-", RowBox[List["4320", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", SuperscriptBox["w", "5"]]], "+", RowBox[List["720", " ", SuperscriptBox["w", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "7"]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02