|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.13.20.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[InverseGammaRegularized[a, Subscript[z, 1], Subscript[z, 2]], {a, 2}] ==
(1/(a Gamma[1 - a])) (E^w w^(1 - 2 a) ((-a) E^w (a - w - 1) Gamma[1 - a]
Gamma[a]^2 (Log[w] - Log[Subscript[z, 1]])^2 +
Gamma[a] (Log[w] - Log[Subscript[z, 1]]) (a E^w Pi Csc[a Pi] -
a Gamma[1 - a] (E^w Gamma[a] + w^a (-Log[w] + Log[Subscript[z, 1]]) +
2 E^w (1 - a + w) Gamma[a, w] (Log[w] - PolyGamma[a]) -
2 E^w (1 - a + w) Gamma[a, Subscript[z, 1]] (Log[Subscript[z, 1]] -
PolyGamma[a]))) - a E^w (a - w - 1) Gamma[1 - a] Gamma[a, w]^2
(Log[w] - PolyGamma[a])^2 - Gamma[a, w]
(a E^w Pi Csc[a Pi] (Log[w] - PolyGamma[a]) + a Gamma[1 - a]
((-E^w) Gamma[a] (Log[w] - PolyGamma[a]) + 2 E^w (1 - a + w)
Gamma[a, Subscript[z, 1]] (Log[w] - PolyGamma[a])
(Log[Subscript[z, 1]] - PolyGamma[a]) +
w^a (Log[w]^2 - 2 Log[w] PolyGamma[a] + PolyGamma[a]^2 +
PolyGamma[1, a]))) + Gamma[a, Subscript[z, 1]]
(a E^w Pi Csc[a Pi] (Log[Subscript[z, 1]] - PolyGamma[a]) +
a Gamma[1 - a] ((-E^w) Gamma[a] (Log[Subscript[z, 1]] -
PolyGamma[a]) + E^w (1 - a + w) Gamma[a, Subscript[z, 1]]
(Log[Subscript[z, 1]] - PolyGamma[a])^2 +
w^a ((2 Log[w] - Log[Subscript[z, 1]]) Log[Subscript[z, 1]] -
2 Log[w] PolyGamma[a] + PolyGamma[a]^2 + PolyGamma[1, a]))))) +
(1/a^4) (E^w w (E^w (1 - a + w) HypergeometricPFQ[{a, a}, {1 + a, 1 + a},
-w]^2 - 2 a HypergeometricPFQ[{a, a, a}, {1 + a, 1 + a, 1 + a},
-w] + (2 a HypergeometricPFQ[{a, a, a}, {1 + a, 1 + a, 1 + a},
-Subscript[z, 1]] Subscript[z, 1]^a)/w^a +
(1/Gamma[1 - a]) ((HypergeometricPFQ[{a, a}, {1 + a, 1 + a},
-Subscript[z, 1]] (-2 E^w w^a (1 - a + w) Gamma[1 - a]
HypergeometricPFQ[{a, a}, {1 + a, 1 + a}, -w] +
a (a E^w Pi Csc[a Pi] - Gamma[1 - a] (a E^w Gamma[a] +
2 a ((-w^a) Log[w] - E^w (1 - a + w) Gamma[a] (Log[w] -
Log[Subscript[z, 1]]) + w^a Log[Subscript[z, 1]] -
E^w Gamma[a, Subscript[z, 1]] Log[Subscript[z, 1]] +
a E^w Gamma[a, Subscript[z, 1]] Log[Subscript[z, 1]] -
E^w w Gamma[a, Subscript[z, 1]] Log[Subscript[z, 1]] +
E^w (1 - a + w) Gamma[a, w] (Log[w] - PolyGamma[a]) +
E^w Gamma[a, Subscript[z, 1]] PolyGamma[a] -
a E^w Gamma[a, Subscript[z, 1]] PolyGamma[a] +
E^w w Gamma[a, Subscript[z, 1]] PolyGamma[a]))))
Subscript[z, 1]^a)/w^(2 a)) +
(E^w (1 - a + w) HypergeometricPFQ[{a, a}, {1 + a, 1 + a},
-Subscript[z, 1]] Subscript[z, 1]^a
(2 w^a HypergeometricPFQ[{a, a}, {1 + a, 1 + a}, -w] +
HypergeometricPFQ[{a, a}, {1 + a, 1 + a}, -Subscript[z, 1]]
Subscript[z, 1]^a))/w^(2 a) + (1/Gamma[1 - a])
((E^w HypergeometricPFQ[{a, a}, {1 + a, 1 + a}, -w]
(a ((-a) Pi Csc[a Pi] + a Gamma[1 - a] (Gamma[a] + 2 (-1 + a - w) (
Gamma[a] (Log[w] - Log[Subscript[z, 1]]) +
Gamma[a, Subscript[z, 1]] (Log[Subscript[z, 1]] - PolyGamma[
a]) + Gamma[a, w] (-Log[w] + PolyGamma[a])))) +
2 (a - w - 1) Gamma[1 - a] HypergeometricPFQ[{a, a},
{1 + a, 1 + a}, -Subscript[z, 1]] Subscript[z, 1]^a))/w^a))) /;
w == InverseGammaRegularized[a, Subscript[z, 1], Subscript[z, 2]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "2"]], "}"]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["a", "-", "w", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ")"]], "2"]]], "+", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "-", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["a", "-", "w", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], "2"]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", "w"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "w", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", "w"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], "2"]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", "w", "]"]]]], "-", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ")"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "w", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox["a", "4"]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", SuperscriptBox[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], "2"]]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", SuperscriptBox["w", RowBox[List["-", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["z", "1"]]]]], "]"]], " ", SubsuperscriptBox["z", "1", "a"]]], "+", FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]], RowBox[List["(", RowBox[List[SuperscriptBox["w", RowBox[List[RowBox[List["-", "2"]], " ", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["z", "1"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", "a", "]"]]]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["w", "a"]]], " ", RowBox[List["Log", "[", "w", "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], "+", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "-", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SubsuperscriptBox["z", "1", "a"]]], ")"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List[RowBox[List["-", "2"]], " ", "a"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["z", "1"]]]]], "]"]], " ", SubsuperscriptBox["z", "1", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["w", "a"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]], "+", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["z", "1"]]]]], "]"]], " ", SubsuperscriptBox["z", "1", "a"]]]]], ")"]]]], "+", FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List["-", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", "w"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["z", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", "w", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["z", "1"]]]]], "]"]], " ", SubsuperscriptBox["z", "1", "a"]]]]], ")"]]]], ")"]]]], ")"]]]], ")"]]]]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 2 </mn> </msup> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> w </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> w </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mi> w </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SubscriptBox["z", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "w"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> + </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SubscriptBox["z", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> w </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SubscriptBox["z", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> ⁢ </mo> <msup> <mi> w </mi> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "w"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "w"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> w </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SubscriptBox["z", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> w </mi> <mi> a </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "w"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> <mo> ⁢ </mo> <msup> <mi> w </mi> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "w"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> w </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SubscriptBox["z", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> w </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> w </mi> <mo> ⩵ </mo> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <pi /> <apply> <csc /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> w </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <pi /> <apply> <csc /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ln /> <ci> w </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <ln /> <ci> w </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <pi /> <apply> <csc /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> w </ci> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> w </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <ci> w </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <power /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> w </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <pi /> <apply> <csc /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <ci> w </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> <apply> <ln /> <ci> w </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <ln /> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <pi /> <apply> <csc /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> w </ci> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "2"]], "}"]]]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a_", ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["a", "-", "w", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ")"]], "2"]]], "+", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "-", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["a", "-", "w", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], "2"]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", "w"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "w", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", "w"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], "2"]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", "w", "]"]]]], "-", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ")"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "w", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", SuperscriptBox[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], "2"]]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", SuperscriptBox["w", RowBox[List["-", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["zz", "1"]]]]], "]"]], " ", SubsuperscriptBox["zz", "1", "a"]]], "+", FractionBox[RowBox[List[SuperscriptBox["w", RowBox[List[RowBox[List["-", "2"]], " ", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["zz", "1"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", "a", "]"]]]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["w", "a"]]], " ", RowBox[List["Log", "[", "w", "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], "+", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "-", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SubsuperscriptBox["zz", "1", "a"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List[RowBox[List["-", "2"]], " ", "a"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["zz", "1"]]]]], "]"]], " ", SubsuperscriptBox["zz", "1", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["w", "a"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]], "+", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["zz", "1"]]]]], "]"]], " ", SubsuperscriptBox["zz", "1", "a"]]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List["-", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", "w"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "w", "]"]], "-", RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", SubscriptBox["zz", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", "w", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", SubscriptBox["zz", "1"]]]]], "]"]], " ", SubsuperscriptBox["zz", "1", "a"]]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]]]], ")"]]]], SuperscriptBox["a", "4"]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|