  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/06.13.20.0004.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    D[InverseGammaRegularized[a, Subscript[z, 1], Subscript[z, 2]], 
   {Subscript[z, 1], 2}] == (1/Subscript[z, 1]) E^(w - 2 Subscript[z, 1]) 
   (w/Subscript[z, 1])^(1 - 2 a) 
   (E^w w - (a - 1) (E^w - E^Subscript[z, 1] (w/Subscript[z, 1])^a) - 
    E^Subscript[z, 1] (w/Subscript[z, 1])^a Subscript[z, 1]) /; 
 w == InverseGammaRegularized[a, Subscript[z, 1], Subscript[z, 2]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", "2"]], "}"]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox["1", SubscriptBox["z", "1"]], SuperscriptBox["\[ExponentialE]", RowBox[List["w", "-", RowBox[List["2", " ", SubscriptBox["z", "1"]]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["w", SubscriptBox["z", "1"]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w"]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", SubscriptBox["z", "1"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["w", SubscriptBox["z", "1"]], ")"]], "a"]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", SubscriptBox["z", "1"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["w", SubscriptBox["z", "1"]], ")"]], "a"], " ", SubscriptBox["z", "1"]]]]], ")"]]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mo> ∂ </mo>  <mn> 2 </mn>  </msup>  <mrow>  <msup>  <semantics>  <mi> Q </mi>  <annotation-xml encoding='MathML-Content'>  <ci> GammaRegularized </ci>  </annotation-xml>  </semantics>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> , </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> z </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mo> ∂ </mo>  <msubsup>  <mi> z </mi>  <mn> 1 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  </mfrac>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> w </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mi> w </mi>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mi> w </mi>  </msup>  <mo> ⁢ </mo>  <mi> w </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mi> w </mi>  </msup>  <mo> - </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mi> w </mi>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> a </mi>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mi> w </mi>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> a </mi>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> w </mi>  <mo> ⩵ </mo>  <mrow>  <msup>  <semantics>  <mi> Q </mi>  <annotation-xml encoding='MathML-Content'>  <ci> GammaRegularized </ci>  </annotation-xml>  </semantics>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> , </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> z </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> D </ci>  <apply>  <ci> InverseGammaRegularized </ci>  <ci> a </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <list>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </list>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <ci> w </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> w </ci>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <ci> w </ci>  </apply>  <ci> w </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <exponentiale />  <ci> w </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> w </ci>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> w </ci>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <eq />  <ci> w </ci>  <apply>  <ci> InverseGammaRegularized </ci>  <ci> a </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z_", "1"], ",", "2"]], "}"]]]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a_", ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["w", "-", RowBox[List["2", " ", SubscriptBox["zz", "1"]]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["w", SubscriptBox["zz", "1"]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w"]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", SubscriptBox["zz", "1"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["w", SubscriptBox["zz", "1"]], ")"]], "a"]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", SubscriptBox["zz", "1"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["w", SubscriptBox["zz", "1"]], ")"]], "a"], " ", SubscriptBox["zz", "1"]]]]], ")"]]]], SubscriptBox["zz", "1"]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |