Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LogGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > LogGamma[z] > Series representations > Generalized power series > Expansions at z==-n > For the function itself





http://functions.wolfram.com/06.11.06.0027.01









  


  










Input Form





LogGamma[z] \[Proportional] -Log[z + n] - 2 I n Pi Floor[Arg[z + n]/(2 Pi)] - n I Pi - LogGamma[1 + n] + PolyGamma[1 + n] (z + n) + (1/2) (Pi^2/3 - PolyGamma[1, 1 + n]) (z + n)^2 + O[(z + n)^3] /; Element[-n, Integers] && -n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LogGamma", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["z", "+", "n"]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "+", "n"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["n", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["LogGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]]]], " ", "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "3"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]], "2"]]], " ", "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]], "3"], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "n"]], "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> log&#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log&#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LogGamma </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> n </ci> <pi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> LogGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <imaginaryi /> <pi /> </apply> </apply> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LogGamma", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["z", "+", "n"]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "+", "n"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["n", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["LogGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "3"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "+", "n"]], "]"]], "3"]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "n"]], "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02