|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.11.06.0018.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LogGamma[z] == Log[2 Pi]/2 - z + (z - 1/2) Log[z] +
(1/2) Sum[((k - 1) Zeta[k, z + 1])/(k (k + 1)), {k, 2, Infinity}] /;
Re[z] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LogGamma", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", "-", "z", "+", RowBox[List[RowBox[List["(", RowBox[List["z", "-", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["k", ",", RowBox[List["z", "+", "1"]]]], "]"]]]], RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mstyle scriptlevel='0'> <mrow> <mi> logΓ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mstyle> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> z </mi> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["k", Rule[Editable, True]], ",", TagBox[RowBox[List["z", "+", "1"]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <ci> logΓ </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Zeta </ci> <ci> k </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LogGamma", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", "z", "+", RowBox[List[RowBox[List["(", RowBox[List["z", "-", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["k", ",", RowBox[List["z", "+", "1"]]]], "]"]]]], RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|