Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LogGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > LogGamma[z] > Differentiation > Fractional integro-differentiation





http://functions.wolfram.com/06.11.20.0006.01









  


  










Input Form





D[LogGamma[a z + b], {z, \[Alpha]}] == Sum[(a z)/(k Gamma[2 - \[Alpha]]) - ((a z)/(b + k)) Hypergeometric2F1Regularized[1, 1, 2 - \[Alpha], -((a z)/(b + k))] + (b/k - Log[(b + k)/k])/Gamma[1 - \[Alpha]], {k, 1, Infinity}]/ z^\[Alpha] - (a EulerGamma z^(1 - \[Alpha]))/Gamma[2 - \[Alpha]] - ((a z^(1 - \[Alpha]))/b) Hypergeometric2F1Regularized[1, 1, 2 - \[Alpha], -((a z)/b)] - (Log[b] + EulerGamma b)/(z^\[Alpha] Gamma[1 - \[Alpha]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["LogGamma", "[", RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["a", " ", "z"]], RowBox[List["k", " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]]]], "-", RowBox[List[FractionBox[RowBox[List["a", " ", "z"]], RowBox[List["b", "+", "k"]]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "1", ",", RowBox[List["2", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["a", " ", "z"]], RowBox[List["b", "+", "k"]]]]]]], "]"]]]], "+", FractionBox[RowBox[List[" ", RowBox[List[FractionBox["b", "k"], "-", RowBox[List["Log", "[", FractionBox[RowBox[List["b", "+", "k"]], "k"], "]"]]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]]]], ")"]]]]]], "-", FractionBox[RowBox[List["a", " ", "EulerGamma", " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]]]], "-", RowBox[List[FractionBox[RowBox[List["a", " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], "b"], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "1", ",", RowBox[List["2", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["a", " ", "z"]], "b"]]]]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "b", "]"]], "+", RowBox[List["EulerGamma", " ", "b"]]]], ")"]], SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mstyle scriptlevel='0'> <mrow> <mi> log&#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]], RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;]]]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> k </mi> </mfrac> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> <mi> k </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mi> b </mi> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]], &quot;b&quot;]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> LogGamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <eulergamma /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> k </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> k </ci> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <eulergamma /> <ci> b </ci> </apply> <apply> <ln /> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["LogGamma", "[", RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["a", " ", "z"]], RowBox[List["k", " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "1", ",", RowBox[List["2", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["a", " ", "z"]], RowBox[List["b", "+", "k"]]]]]]], "]"]]]], RowBox[List["b", "+", "k"]]], "+", FractionBox[RowBox[List[FractionBox["b", "k"], "-", RowBox[List["Log", "[", FractionBox[RowBox[List["b", "+", "k"]], "k"], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]]]], ")"]]]]]], "-", FractionBox[RowBox[List["a", " ", "EulerGamma", " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "1", ",", RowBox[List["2", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["a", " ", "z"]], "b"]]]]], "]"]]]], "b"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "b", "]"]], "+", RowBox[List["EulerGamma", " ", "b"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29