|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.11.21.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^(\[Alpha] - 1) LogGamma[z], z] ==
z^\[Alpha]/\[Alpha]^2 + (EulerGamma z^(\[Alpha] + 1))/
(\[Alpha] (1 + \[Alpha])) + z^\[Alpha] (LogGamma[z]/\[Alpha]) -
(z^(\[Alpha] + 2)/(\[Alpha] (\[Alpha] + 2)))
Sum[(1/(k + 1)^2) HypergeometricPFQ[{1, 2, 2 + \[Alpha]},
{2, 3 + \[Alpha]}, -(z/(k + 1))], {k, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["LogGamma", "[", "z", "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["z", "\[Alpha]"], SuperscriptBox["\[Alpha]", "2"]], "+", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["\[Alpha]", "+", "1"]]]]], RowBox[List["\[Alpha]", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]"]], ")"]]]]], "+", RowBox[List[SuperscriptBox["z", "\[Alpha]"], FractionBox[RowBox[List["LogGamma", "[", "z", "]"]], "\[Alpha]"]]], "-", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["\[Alpha]", "+", "2"]]], RowBox[List["\[Alpha]", RowBox[List["(", RowBox[List["\[Alpha]", "+", "2"]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "2"], " "]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "2", ",", RowBox[List["2", "+", "\[Alpha]"]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", RowBox[List["3", "+", "\[Alpha]"]]]], "}"]], ",", RowBox[List["-", FractionBox["z", RowBox[List["k", "+", "1"]]]]]]], "]"]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> logΓ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <msup> <mi> z </mi> <mi> α </mi> </msup> <mi> α </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mi> logΓ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mi> α </mi> </msup> <msup> <mi> α </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> α </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> α </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mrow> <mi> α </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mi> α </mi> <mo> + </mo> <mn> 3 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Alpha]", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Alpha]", "+", "3"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["z", RowBox[List["k", "+", "1"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LogGamma </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> α </ci> </apply> <apply> <power /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LogGamma </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> α </ci> </apply> <apply> <power /> <apply> <power /> <ci> α </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <eulergamma /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> α </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> α </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> α </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> α </ci> <cn type='integer'> 3 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["LogGamma", "[", "z_", "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[SuperscriptBox["z", "\[Alpha]"], SuperscriptBox["\[Alpha]", "2"]], "+", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["\[Alpha]", "+", "1"]]]]], RowBox[List["\[Alpha]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["LogGamma", "[", "z", "]"]]]], "\[Alpha]"], "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "+", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "2", ",", RowBox[List["2", "+", "\[Alpha]"]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", RowBox[List["3", "+", "\[Alpha]"]]]], "}"]], ",", RowBox[List["-", FractionBox["z", RowBox[List["k", "+", "1"]]]]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "2"]]]]]], RowBox[List["\[Alpha]", " ", RowBox[List["(", RowBox[List["\[Alpha]", "+", "2"]], ")"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|